
CS 493: Algorithms for Massive Data Sets Streaming Algorithms (Cont.)
03/28/2002 Scribe: Fengzhou Zheng

1 Review

1.1 Stream Model and Frequency Moments

In stream model, the data to be processed are given to us one by one as a sequence and
cannot be stored, mainly due to the consideration of space complexity. So in this model
there is not a single moment when we have the full data set in hand. However, we are still
able to learn or estimate some global properties of the sequence of data, such as frequency
moments.

Let A = (a1, a2, . . . , am) be a sequence of elements, where each ai is a member of N =
{1, 2, . . . , n}. Let mi denote the number of occurrences of element i in the sequence A, and
define, for each k ≥ 0

Fk =
n∑

i=1

mk
i

as the k’th frequency moment. In particular, F0 is the number of distinct elements
appearing in the sequence, F1 is the length of the sequence. The frequency moments of a
data set represent important demographic information about the data, and are important
features in the context of database applications.

1.2 Estimation in Stream Model

It is rather straightforward to maintain the (exact) frequency moments by maintaining a full
histogram on the data, i.e., maintaining a counter mi for each data value i ∈ {1, 2, . . . , n},
which requires memory of size Ω(n). However, sometimes it is important to reduce the space
complexity. In the previous lecture, we have learned about some randomized algorithms that
can approximate F1 and F2 using limited memory.

The basic idea behind these randomized algorithms is to devise a random variable Y
whose computation only requires limited memory in stream model and whose expectation
E[Y] equals to the value V we want to estimate. Using F2 as an example, we have constructed
its estimator Y as follows: given H, a family of hash functions and for each h ∈ H,

h : {1, 2, . . . , n} −→ {+1,−1}

randomly pick an h from H and let

xi = h(i) i ∈ {1, 2, . . . , n}

X =
n∑

i=1

ximi

1

then, our estimator for F2 is
Y = X2

It is easily to see that X, thus Y , can be computed using only one counter (O(log m) bits)
in stream model. Also

E[Y] = E[(
∑

ximi)
2]

= E[
∑

x2
i m

2
i +

∑

i6=j

xixjmimj]

=
∑

m2
i +

∑

i6=j

mimjE[xixj]

=
∑

m2
i +

∑

i6=j

mimjE[xi]E[xj]

=
∑

m2
i

In order to proceed with the above deduction, we assume following two things about H:

• pair-wise independency, that is, Pr[h(i) = x, h(j) = y] = Pr[h(i) = x] · Pr[h(j) = y]
so that E[xixj] = E[xi]E[xj] for all i 6= j

• Pr[h(i) =+1] = Pr[h(i) =−1] so that E[xi] = 0 for all i

if we randomly pick an h from H.
If we can further prove that var[Y] ≤ O(V 2), then we can come up with the following

scheme:
Y11, Y12, . . . , Y1C1
︸ ︷︷ ︸

C1

Y21, Y22, . . . , Y2C1
︸ ︷︷ ︸

C1

· · ·

︸ ︷︷ ︸

C2

where Yij’s are independent tests on the same data set. Let Yi be the mean of Yi1, Yi2, . . . , YiC1

and Y be the median of Y1, Y2, . . . , YC2
. We proved following theorem in last lecture. For

more details about the proof, please refer to the note of last lecture.

Theorem 1.1 If E[Yij] = V and var[Yij] ≤ O(V 2), the above scheme guarantees that

Pr[|Y − V | < εV] ≥ 1 − δ, for some C1 = O(1/ε2) C2 = O(log(1/δ)).

Notice that in order to prove var[Y] ≤ O(V 2) for F2’s case, we further assume that H is
4-wise independent, because there are terms like E[xixjxkxl] showing up in the proof.

2 More Examples of Estimation

2.1 Estimation with Multiple Streams

There are situations where we want to estimate some properties about multiple data steams.
For example, let us consider the case with two data steams, say

fi = number of element i in 1st stream

2

gi = number of element i in 2nd stream

how do we estimate
∑

(fi − gi)
2? It is easy to show that by choosing

X =
∑

xi(fi − gi) =
∑

xifi −
∑

xigi = X(1) − X (2)

Y = X2

all the known results about F2 can be applied here.
As a more realistic example, let’s try to estimate

∑
figi. This value has its meaning in

database applications: for two tables {< ai, bi > | ai ∈ A, bi ∈ B} and {< bj, cj > | bj ∈
B, cj ∈ C} in a relational database, let fi and gi denote the number of occurrences of element
i in column B of these two tables, respectively, then

∑
figi indicates the size of the result of

joining these two tables. We can construct its estimator as follows:

Y = X (1)X(2) = (
∑

xifi)(
∑

xigi)

E[Y] = E[(
∑

xifi)(
∑

xigi)]

= E[
∑

x2
i figi +

∑

i6=j

xixjfigj]

=
∑

figi

and

var[Y] = E[(X (1)X(2))2] − (E[X (1)X(2)])2

= E[(
∑

x2
i figi)

2 + (
∑

i6=j

xixjfigj)
2 +

∑

others

. . .] − (
∑

figi)
2

= E[(
∑

i6=j

xixjfigj)
2]

=
∑

i6=j

f 2
i g2

j +
∑

i6=j

figjfjgi

≤ (
∑

f 2
i)(

∑

g2
i) +

∑

i6=j

figjfjgi

≤ (
∑

f 2
i)(

∑

g2
i) + (

∑

figi)
2

≤ 2(
∑

f 2
i)(

∑

g2
i) (Cauchy Inequality)

Although we have proved that var[Y] ≤ 2(
∑

f 2
i)(

∑
g2

i), since (
∑

f 2
i)(

∑
g2

i) ≥ (
∑

figi)
2, we

can not use the measurement scheme described before to get the same result.

2.2 Estimating F0

As we have said before, F0 is the number of distinct elements in the data stream. The most
straight forward method to get F0 would be keeping track of all distinct elements in the

3

stream, but this requires O(n) memory. Here we first give a algorithm that can estimate F0

using only O(1) memory theoretically, and then the one used in practice.
Suppose there are K distinct elements, x1, x2, . . . , xK , in the stream and H is a family of

hash function h’s, such that h : {1, 2, . . . , n} −→ [0, 1] and h(xi) is evenly distributed between
0 and 1 for any xi ∈ {1, 2, . . . , n} if we randomly choose h from H. Let X = minK

i=1 h(xi).
Since

Pr[X ∈ [t, t + dt]] = K(1 − t)K−1dt

we have

E[X] =
∫ 1

0
t · K(1 − t)K−1dt

= K
∫ 1

0
(1 − (1 − t))(1 − t)K−1dt

= K(
∫ 1

0
(1 − t)K−1dt −

∫ 1

0
(1 − t)Kdt)

= K(
1

K
−

1

K + 1
)

=
1

K + 1

E[X2] =
∫ 1

0
t2 · K(1 − t)K−1dt

= K
∫ 1

0
(1 − (1 − t))(1 − (1 − t))(1 − t)K−1dt

= K
∫ 1

0
(1 − 2(1 − t) + (1 − t)2)(1 − t)K−1dt

= K(
∫ 1

0
(1 − t)K−1dt − 2

∫ 1

0
(1 − t)Kdt +

∫ 1

0
(1 − t)K+1dt)

= K(
1

K
−

2

K + 1
+

1

K + 2
)

= K(
K2 + 3K + 2 − 2K2 − 4K + K2 + K

K(K + 1)(K + 2)
)

=
2

(K + 1)(K + 2)

var[X] = E[X2] − (E[X])2

=
2

(K + 1)(K + 2)
−

1

(K + 1)2

=
1

(K + 1)2(1 + 2
K

)

= O(
1

(K + 1)2
)

So all the analysis about F2 in the last lecture is applicable in estimating 1
K+1

, and F0 = K.

4

Although the algorithm above can estimate 1
K+1

and thus F0, it requires that the possible
values of h(xi) include all real numbers between 0 and 1, which makes h difficult to implement
in practice. So here we give an alternative approximation algorithm, where the ranges of
hash functions are just some finite integer sets.

Consider a hash function family H, where each h maps an element in a Galois Field
to another element in the same field. To be exact, h(x) = ax + b, where a, b are chosen
randomly from GF (2d), 2d > m. Here we assume that each distinct data element in the
stream corresponds to a distinct element in GF (2d), so we use same variables, say x, to
represent both a data element and its counterpart in the field undistinguishedly. Each
element in GF (2d) can be represented as a bit-vector, let r(ax + b) denote the length of the
starting sequence of consecutive 0’s in ax + b, then our new estimator Y can be constructed
as follows:

R =
K

max
i=1

r(axi + b)

Y = 2R

For Y , we can prove following theorem:

Theorem 2.1 Pr[Y ∈ [F0/C, CF0]] ≥ 1 − 3/C for any appropriate constant C.

Proof. First let us define some notations:

Zr(xi) =

{

1 r(axi + b) ≥ r
0 otherwise

Zr =
∑

Zr(xi).

By assuming that H is fully random and pair-wise independent, we have

E[Zr(xi)] =
1

2r

E[Zr] =
F0

2r

var[Zr] =
F0

2r
(1 −

1

2r
) <

F0

2r

Now let us compute Pr[Y > CF0]. Let r′ be the smallest r that satisfies 2r > CF0.

Pr[Y > CF0] = Pr[2R ≥ 2r′

]

= Pr[R ≥ r′]

= Pr[Zr′ ≥ 1]

≤ E[Zr′]/1 (Markov Bounds)

= F0/2r′

< 1/C

5

For Pr[Y < F0/C], let r′′ be the largest r such that 2r < F0/C.

Pr[Y < F0/C] = Pr[2R ≤ 2r′′

]

= Pr[R ≤ r′′]

= Pr[Zr′′+1 = 0]

≤ Pr[|Zr′′+1 − E[Zr′′+1]| ≥ E[Zr′′+1]]

≤
var[Zr′′+1]

(E[Zr′′+1])2
(Chebyshev Bounds)

< 1/
F0

2r′′+1

= 2/
F0

2r′′

< 2/C

2.3 Construction of H

Using the H for estimating F2 as an example, we can construct it as an explicit set of
H = {h1, h2, . . . , hk} of k = O(n2) vectors of length n with+1,−1 entries, and for every four
distinct coordinates 1 ≤ i1 ≤ . . . ≤ i4 ≤ n and every choice of ε1, . . . , ε4 ∈ {+1,−1} exactly
(1/16) fraction of the vectors have εj in their coordinate number ij for j = 1, . . . , 4. As
described in [2] such sets can be constructed using the parity check matrices of BCH codes.

References

[1] Noga Alon, Yossi Matias, Mario Szegedy: The Space Complexity of Approximating the

Frequency Moments, Journal of Computer and System Sciences, 58(1): 137-147 (1999).

[2] N. Alon, L. Babai, and A. Itai: A fast and simple randomized parallel algorithm for the

maximal independent set problem, J. Algorithms 7: 567-583 (1986).

6

