
1 Introduction

We have been talking coding theory and information theory in the first three weeks of this
course. And error correcting codes (tornado codes and erasure channels) in the previous two
weeks. We will focus on classification, clustering and learning for this week.

Materials of this lecture can be found in Chapter 6 of the book Machine Learning by
Tom Mitchell.

Machine learning has interesting connection to the information theory. However, it is a
broad topic in itself. We cannot do justice to it in a week. But will offer a flavor of those
popular techniques currently in the field.

Large amount of data exist in different applications. For example, web page collections,
text documents, credit histories and symptoms for patients. One may want to cluster or
classify these documents to obtain useful information such as the category of a given web
page. Many learning algorithms can cluster or classify. We will mainly deal with the baysian
approach, which assumes prior information. The baysian approach has simple and sound
mathematics foundation. However it needs a fair amount of prior information and needs
computation for every hypothesis in model parameter space to obtain the optimum model.

2 Bayes Theorem, MAP and ML

Theorem 2.1. H hypothesis

D data

P (h) probability of a particular hypothesis h

P (D|h) probability of observing D given h

P (h|D) = P (D|h)·P (h)
P (D)

1. MAP ( Maximum a posterior hypothesis that maximize P (h|D) )
hMAP = arg maxh∈H P (D|h) · P (h)

2. ML ( Maximum likelihood hypothesis )
hML = arg maxh∈H P (D|h)

If priors are uniform, hML = hMAP .
Example: suppose we are conducting a test to see if a patient has a certain kind of

cancer or not. Assume prior of getting this cancer for a population is 0.8%. If a patient has
cancer, probability of positive test results is

Solution:

1. if hypothesis is having cancer, P (positive|cancer) ·P (cancer) = 0.98 · 0.008 = 0.00784

2. if hypothesis is having no cancer, P (positive|!cancer) · P (notcancer) = 0.03 · 0.992 =
0.02976
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Therefore the MAP hypothesis if given a positive test result is no cancer at all.

3 Concept Learning

We define a hypothesis space H and a mapping function c : x → {0, 1}. The mapping
function defines the concept of a given data point. This mapping is the focus of what a
learner wants to learn. We formulate the concept learning problem as follows:

Given a set of values (xi, di), where di = c(xi). Find h ∈ H, such that di = h(xi).
We assume

1. training data is noise free

2. target concept c ∈ H

3. no apriori reason to favor h1 ∈ H or h2 ∈ H

If the concept found by a hypothesis agrees with the given label of a data point for all
the data, we say the hypothesis is consistent with given data. Express more theorectially,

P (D|h) =

{

1 if di = h(xi)∀di;
0 otherwise.

The hypothesis is consistent with the given data if and only if P (D|h) = 1.
We define version space as

V SH,D = version space of H, D

= {h ∈ H, h consistent with D}

Any single h in V SH,D is hMAP .
P (h|D) = 1

|V SH,D|
Now we relax one assumption when defining concept learning. We will assume the data

is noisy instead of noisefree from now on. Reformulate the problem as
we want to learn some function f : X → < such that given (xi, di), di = f(xi) + ei

if errors (ei) are normally distributed, how to choose f?

hMAP = arg max
h∈H

P (D|h)

= arg max
h∈H

∏

i

1√
2πσ2

· e−
1
2
·(

�
di−h(xi)

σ � )2

Take logs, assume σ is fixed
hML = arg minh∈H

∑

i(di − h(xi))
2
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Why we are using Gaussians to model the errors of learning functions? First of all Gaus-
sians have nice properties. Secondly it does approximate the shape of the error distribution
curve.

How do we choose a probability distribution using MAP or ML?
Maximum likelihood hypothesis for probabilities: f : X → {0, 1}, a probabilistic

mapping function f ′(x) = prob[f(x) = 1]
given a function space (binary valued functions in this case), what is the best function

to choose?
We want to maximize P (D|h) where D = {〈xi, di〉}
Assume samples independent of each other,

P (D|h) =

n
∏

i=1

P (xi, di|h)

=
n

∏

i=1

P (di|h, xi) · P (xi)

P (di|h, xi) =

{

h(xi) if di = 1;
1 − h(xi) if di = 0.

= (h(xi))
di · (1 − h(xi))

1−di

hML = arg max
h∈H

∏

i

P (di|h, xi)

= arg max
h∈H

∏

i

h(xi)
di · (1 − h(xi))

1−di

Take logs,

hML = arg min
h∈H

∑

i

di · log h(xi)(1 − di) · log (1 − h(xi))

The constituent terms of the sum can be interpreted as cross entropy in information the-
ory. Cross entropy measure distance between observed distribution and correct distribution.
When the mapping functions isnt probabilistic, we are using squared distance instead of
cross entropy.

4 MDL (Maximum Description Length)

MDL principle: of all the hypothesis you can choose from, choose the one with minimum
description length.

3



We will explain this principle by MAP hypothesis.

hMAP = arg max
h∈H

P (D|h) · P (h)

= arg max
h∈H

log2P (D|h) + log2P (h)

= arg min
h∈H

log2P (D|h) − log2P (h)

−log2P (h): size of optimum encoding of h. Each h in hypothesis space will associate with
a probability according to prior information. Therefore there is a probabilistic distribution
of hypothesis in the space. The optimum encoding of this distribution gives the size of
optimum encoding of a particular h.

−log2P (D|h): size of the optimal encoding of the data given h.
Therefore hMAP picks the hypothesis which minimize the size of optimal encoding of the

model (hypothesis) and optimal encoding of the data given the model. Given c1, c2 being
two encodings which encode respectively the model and the data given model,

hMAP = arg minh∈H Lc1(h) + Lc2(D|h)
Baysian approach justifies the MDL principle by saying whenever to choose models,

choose the simpler one. It is always possible to have a complicated model tuned extremely
well for training data. However such models are not likely to generalize to unseen data. By
choosing the simpler model, the problem of overfitting can be alleviated.

5 Bayes Optimal Rule

Example:
h1, h2, h3 are three hypotheses. Given a sample x and its classification result under the

hypostheses,
h1 + 0.4
h2 - 0.3
h3 - 0.3

What is the most likely classification? hMAP=positive
however if we weight each hypothesis decision by their probabilities,

p[+] = 0.4

p[−] = 0.6

Therefore the most likely classification is negative.
Here we introduce the bayes optimal rule.
Choose the hypothesis which satisfies the following equation where vj ∈ V are labels:

arg maxvj∈V

∑

hi∈H P (vj|hi) · P (hi|D)
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Given hypothesis space, given prior distribution, bayes optimal rul minimizes the classi-
fication errors of new samples.

However, even if we can learn hypothesis quickly, we still have to sum up over all hy-
pothesis space. People have devised workaround algorithms to curtail this problem. Gibbs
algorithm is one of them.

Gibbs Algorithm:

1. pick h ∈ H according to aposterior distribution

2. classify new example using h

The expected misclassification error of Gibbs algorithm is smaller or equal to two times
the optimal misclassification error. Proof will be left to homework.

6 Nave Baysian Classifier

Given a data set, each data item x has attributes 〈a1, · · · , an〉, we want to know f(x) ∈ V ,

vMAP = arg max
h∈H

P (vj|a1, · · · , an)

= arg max
h∈H

P (a1, · · · , an) · P (vj)

P (a1, · · · , an)

= arg max
h∈H

P (a1, · · · , an) · P (vj)

However P (a1, · · · , an) is hard to estimate because too many training data are required.
Nave baysian classifier suggests

vMAP = arg maxh∈H P (a1|vj) · · ·P (an|vj)
This usually serves as the benchmark for experimenting with other types of classifiers.

7 EM algorithm

In the previous discussion we assume all parameters of a model are observed. However there
are cases where some parameters are observed and some are not. EM algorithm tackles
this problem by trying to estimate all the parameters, both observed and hidden. We will
examine EM algorithm in next lecture and especially treat a variant of it: how to learn a
mixture of Gaussians.
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