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Figure 1: Encoding structure of tornado code
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1 Reception efficiency

Suppose the length of original message is n, the length of encoded message is cn, the length
of received message is rec, reception efficiency is defined as the ratio of packets in message to
packets needed to decode: n/rec. Optimally, when reception efficiency is 1, the original message
can be decoded from any n words of encoding.

Practically, we want to decode from any (1 + ε)n words of encoding. Accordingly, the reception
efficiency is 1/(1+ ε).

2 Regular graph

In tornado code, a message of length n is encoded to length cn with c = 2 in several steps. As
shown in figure 1, in each step, the length is shrinked by a factor of β = 1− 1/c. The goal is to
recover the message from close to β erasures.

We first considered using 3-6 regular graph for the design and analysis of tornado codes. As
shown in figure 2, suppose the probability of packet not recovered in previous step is x, and in
current step is y, they satisfy y = a(1− (1− x)5)2. For the decoding to proceed, we need y < x for
all 0 < x < a (a < 0.43). The performance of regular graph is shown in figure 3, the maximum
reception efficiency is achieved when left degree is round 3.
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Figure 4: Irregular graphs

The performance of regular graphs are not very good. Because the right degree is 2d, so Pr[right
degree = 1] = 1/22d−1. This implies the expected number of left nodes with neighbor of degree 1
is d/22d−1.

3 Irregular graph

Using irregular graph can achieve a better performance than using regular graph. An example of
irregular graph is shown in figure 4.

Let li be the fraction of edges of degree i on the left in the original graph, ri be the fraction of edges
of degree i on the right in the original graph. We define the degree sequence functions as:

l(x) = ∑ lixi−1 and r(x) = ∑ rixi−1

Similar to the analysis of regular graphs in figure 2, suppose the probability of packet not recovered
in previous step is x, and in current step is y, they satisfy y = a× l(1− r(1− x)) and for decoding
to proceed, we want y < x for all 0 < x < a.

A good left degree sequence is got from truncated heavy tail distribution and right degree sequence
is got from Poisson distribution:

li = 1
H(D)(i−1) (i = 2,3, ...,D+1) and ri = e−aai−1

(i−1)!

H(D) is the harmony function. Let al and ar be the average node degree on the left and right, then:

al =
H(D)(D+1)

D ≈ ln(D) and ar = aea

ea
−1 ≈ ln(D)/b
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Figure 5: Decoding

They satisfy al = bar. From li and ri, we know that

l(x) = −ln(1−x)
H(D) and r(x) = e

(D+1)H(D)
bD (x−1)

So, r(1− x) = e−
D+1

D
H(D)

b x, and for decoding to proceed, it must satisfies:

y = al(1− r(1− x)) =
−

D+1
D

H(D)
b x

H(D) < x for all 0 < x < a => a < D
D+1 b

Because the average right degree is 2ln(D), Pr[right degree=1]∼ 1/D. So the expected number
of neighbors of degree 1 is 1. From this, it’s easy to see that irregular graph will have better
performance than regular graph.

4 Error-correcting codes

In error-correcting codes, the check bit is computed as the XOR of its incident message bit. The
decoding proceeds in rounds and can be described as a cascading series of bipartite graphs as in
figure 5. One layer is corrected each time by assumming previous layers corrected. The belief
propagation works as follows:

• From my other check bits, I believe I am ...

• From my other message bits, I believe I am ...

With belief propagation, we want to reduce the number errors to a very small fraction. We use the
following strategy:

• message bit m will send received bit to check bit c unless all other check bits say otherwise

• check bit c sends to message bit m the XOR of the values it received in this round from its
adjacent message bits
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Let dl be the degree of message nodes and dr be the degree of check nodes. With probability p a
message node receives the wrong bit. Let pi be the probability that message bit sends check bit a
wrong value in round i. Initially, p0 = p.

We can define a recursive equation describing the evolution of pi over a constant number of rounds.
Consider the end of the ith round, and the probability that a check bit receives an even number
errors is:

1+(1−2pi)
dr−1

2

the probability that message bit is received wrong but sent correctly in round i+1 is:

p0[
1+(1−2pi)

dr−1

2 ]dl−1

the probability that message bit is received correctly but sent wrong in round i+1 is:

(1− p0)[
1−(1−2pi)

dr−1

2 ]dl−1

This gives an equation for pi+1 interms of pi:

pi+1 = p0 − p0[
1+(1−2pi)

dr−1

2 ]dl−1 +(1− p0)[
1−(1−2pi)

dr−1

2 ]dl−1

We want for any ε > 0, the fraction of incorrect edges pi can be reduced to ε in a constant number
of rounds.
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