
1

Spring 2002 CS 461 1

Reliable Byte-Stream (TCP)

Outline
Connection Establishment/Termination
Sliding Window Revisited
Flow Control
Adaptive Timeout

Spring 2002 CS 461 2

End-to-End Protocols
• Underlying best-effort network

– drop messages
– re-orders messages
– delivers duplicate copies of a given message
– limits messages to some finite size
– delivers messages after an arbitrarily long delay

• Common end-to-end services
– guarantee message delivery
– deliver messages in the same order they are sent
– deliver at most one copy of each message
– support arbitrarily large messages
– support synchronization
– allow the receiver to flow control the sender
– support multiple application processes on each host

Spring 2002 CS 461 3

Simple Demultiplexor (UDP)
• Unreliable and unordered datagram service
• Adds multiplexing
• No flow control
• Endpoints identified by ports

– servers have well-known ports
– see / et c/ ser vi ces on Unix

• Header format

• Optional checksum
– psuedo header + UDP header + data

SrcPort DstPort

Checksum Length

Data

0 16 31

2

Spring 2002 CS 461 4

TCP Overview

• Connection-oriented
• Byte-stream

– app writes bytes
– TCP sends segments
– app reads bytes

Application process

Write
bytes

TCP
Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP
Receive buffer

…

… …

• Full duplex
• Flow control: keep sender

from overrunning receiver
• Congestion control: keep

sender from overrunning
network

Spring 2002 CS 461 5

Data Link Versus Transport
• Potentially connects many different hosts

– need explicit connection establishment and termination

• Potentially different RTT
– need adaptive timeout mechanism

• Potentially long delay in network
– need to be prepared for arrival of very old packets

• Potentially different capacity at destination
– need to accommodate different node capacity

• Potentially different network capacity
– need to be prepared for network congestion

Spring 2002 CS 461 6

Segment Format

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

3

Spring 2002 CS 461 7

Segment Format (cont)
• Each connection identified with 4-tuple:

– (Sr cPor t , Sr c I PAddr , Dsr Por t , Dst I PAddr)

• Sliding window + flow control
– acknowl edgment , SequenceNum, Adver t i sedWi now

• Flags
– SYN, FI N, RESET, PUSH, URG, ACK

• Checksum
– pseudo header + TCP header + data

Sender

Data (SequenceNum)

Acknowledgment +
AdvertisedWindow

Receiver

Spring 2002 CS 461 8

Connection Establishment and
Termination

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

Spring 2002 CS 461 9

State Transition Diagram
CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK Timeout after two
segment lifetimes

FIN/ACK

ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open/SYN

4

Spring 2002 CS 461 10

Sliding Window Revisited

• Sending side
– Last Byt eAcked < =

Last Byt eSent

– Last Byt eSent < =
Last Byt eWr i t t en

– buffer bytes between
Last Byt eAcked and
Last Byt eWr i t t en

Sending application

LastByteWritten

TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead

TCP

LastByteRcvdNextByteExpected

• Receiving side
– Last Byt eRead <

Next Byt eExpect ed

– Next Byt eExpect ed < =
Last Byt eRcvd +1

– buffer bytes between
Next Byt eRead and
Last Byt eRcvd

Spring 2002 CS 461 11

Flow Control
• Send buffer size: MaxSendBuf f er
• Receive buffer size: MaxRcvBuf f er

• Receiving side
– Last Byt eRcvd - Last Byt eRead < = MaxRcvBuf f er
– Adver t i sedWi ndow = MaxRcvBuf f er - (Next Byt eExpect ed -

Next Byt eRead)

• Sending side
– Last Byt eSent - Last Byt eAcked < = Adver t i sedWi ndow
– Ef f ect i veWi ndow= Adver t i sedWi ndow - (Last Byt eSent -

Last Byt eAcked)
– Last Byt eWr i t t en - Last Byt eAcked < = MaxSendBuf f er
– block sender if (Last Byt eWr i t t en - Last Byt eAcked) + y >

MaxSender Buf f er

• Always send ACK in response to arriving data segment
• Persist when Adver t i sedWi ndow = 0

Spring 2002 CS 461 12

Silly Window Syndrome

• How aggressively does sender exploit open window?

• Receiver-side solutions
– after advertising zero window, wait for space equal to a

maximum segment size (MSS)
– delayed acknowledgements

Sender Receiver

5

Spring 2002 CS 461 13

Nagle’s Algorithm

• How long does sender delay sending data?
– too long: hurts interactive applications

– too short: poor network utilization

– strategies: timer-based vs self-clocking

• When application generates additional data
– if fills a max segment (and window open): send it

– else
• if there is unack’ed data in transit: buffer it until ACK arrives

• else: send it

Spring 2002 CS 461 14

Protection Against Wrap Around

• 32-bit SequenceNum

Bandwidth Time Until Wrap Around
T1 (1.5 Mbps) 6.4 hours
Ethernet (10 Mbps) 57 minutes
T3 (45 Mbps) 13 minutes
FDDI (100 Mbps) 6 minutes
STS-3 (155 Mbps) 4 minutes
STS-12 (622 Mbps) 55 seconds
STS-24 (1.2 Gbps) 28 seconds

Spring 2002 CS 461 15

Keeping the Pipe Full

• 16-bit Adver t i sedWi ndow

Bandwidth Delay x Bandwidth Product
T1 (1.5 Mbps) 18KB
Ethernet (10 Mbps) 122KB
T3 (45 Mbps) 549KB
FDDI (100 Mbps) 1.2MB
STS-3 (155 Mbps) 1.8MB
STS-12 (622 Mbps) 7.4MB
STS-24 (1.2 Gbps) 14.8MB

assuming 100ms RTT

6

Spring 2002 CS 461 16

TCP Extensions

• Implemented as header options

• Store timestamp in outgoing segments

• Extend sequence space with 32-bit timestamp
(PAWS)

• Shift (scale) advertised window

Spring 2002 CS 461 17

Adaptive Retransmission
(Original Algorithm)

• Measure Sampl eRTT for each segment / ACK pair

• Compute weighted average of RTT
– Est RTT = α x Est RTT + β x Sampl eRTT

– where α + β = 1

− α between 0.8 and 0.9
− β between 0.1 and 0.2

• Set timeout based on Est RTT

– Ti meOut = 2 x Est RTT

Spring 2002 CS 461 18

Karn/Partridge Algorithm

• Do not sample RTT when retransmitting

• Double timeout after each retransmission

Sender Receiver

Original transmission

ACK

S
am

pl
eR

T
T

Retransmission

Sender Receiver

Original transmission

ACK

S
am

pl
eR

T
T

Retransmission

7

Spring 2002 CS 461 19

Jacobson/ Karels Algorithm
• New Calculations for average RTT
• Di f f = Sampl eRTT - Est RTT

• Est RTT = Est RTT + (δδδδ x Di f f)
• Dev = Dev + δδδδ(| Di f f | - Dev)

– where δ is a factor between 0 and 1

• Consider variance when setting timeout value
• Ti meOut = µ x Est RTT + φ x Dev

– where µ = 1 and φ = 4

• Notes
– algorithm only as good as granularity of clock (500ms on Unix)
– accurate timeout mechanism important to congestion control (later)

