
1

Spring 2002 CS 461 1

Group Communication

Outline
Multicast Routing
Logical Time
Order & Membership Protocols

Spring 2002 CS 461 2

Process Groups
• Any set of processes that want to cooperate

• Processes can join/leave either implicitly or explicitly

• A process can belong to many groups

• Groups can be either open or closed

• Use multicast rather than point-to-point messages
– group name (address) provides a useful level of indirection

• Example uses
– data dissemination (e.g., news)
– replicated servers

Spring 2002 CS 461 3

Multicast Routing: LS 

• Each host on a LAN periodically announces the 
groups it belongs to using IGMP

• Augment update message (LSP) to include set of 
groups that have members on a particular LAN

• Each router uses Dijkstra’s algorithm to compute 
shortest-path spanning tree for each source/group pair

• Each router caches tree for currently active 
source/group pairs



2

Spring 2002 CS 461 4

Multicast Routing: DV

• Reverse Path Broadcast
– Each router already knows that shortest path to S goes 

through router N

– When receive multicast packet from S, forward on all 
outgoing links (except one it arrived on), iff packet 
arrived from N

– Eliminate duplicate broadcast packets by letting only 
“parent” for LAN (relative to S) forward

• shortest path to S (learn from distance vector)
• smallest address to break ties

Spring 2002 CS 461 5

DV (cont)

• Reverse Path Multicast
– Goal: prune networks have have no hosts in group G

– Step 1: determine if LAN is a leaf w/ no members in G
• leaf if parent is only router on the LAN

• determine if any hosts are members of G using IGMP

– Step 2: propagate “no members of G here” information
• augment (destination, cost) update sent to neighbors with set of

groups for which this network is interested in receiving 
multicast packets

• only happens when multicast address becomes active

Spring 2002 CS 461 6

Replicated State Machine

• Service is characterized as a state machine that 
modifies variables in response to outside operations

• State machine is replicated to improve availability
• Key is ensuring

– all operations are atomic (applied at all functioning replicas)
– all replicas remain consistent (ops applied in same order)

• Implementation
– encapsulate operations in messages
– send using group communication



3

Spring 2002 CS 461 7

Atomic Messages

• Atomicity property: a message is delivered to all 
members, or to none

• First try…
– each recipient acknowledges message

– sender retransmits if ACK not received

– problem: sender could crash before message is 
delivered everywhere

Spring 2002 CS 461 8

Atomic Messages (cont)

• Fix: if sender crashes, a recipient volunteers to be 
“backup sender” for the message
– re-sends message to everybody, waits for ACKs

– use simple algorithm to choose volunteer

– apply method again if backup fails

• Must remember all received messages in case we need 
to become backup sender
– periodic protocol to “prune” old messages

– how know it’s safe to prune?

Spring 2002 CS 461 9

Message Ordering

• So far: different members may see messages in 
different orders

• Ordered group communication requires all 
members to agree about the order of messages

• Within group, assign global ordering to messages

• Hold back messages that arrive out-of-order



4

Spring 2002 CS 461 10

Ordering: First Approach

• Central ordering server assigns global sequence 
numbers

• Hosts apply to ordering server for numbers, or 
ordering server sends all messages itself

• Have to deal with case where ordering server fails
– leader election we saw earlier

• Hold-back easy since sequence numbers are 
sequential

Spring 2002 CS 461 11

Ordering: Second Approach

• Use time message was sent
– measured on sending host

– use host address to break ties

• Advantage
– simple and decentralized

• Disadvantage
– requires nearly synchronized clocks
– must hold back messages for a period equal to 

maximum clock difference

Spring 2002 CS 461 12

Logical Time

• Insight: often don’t care about when something 
happened, only about which thing happened first

• Happened before relationship
– X < Y means “X happened before Y”

– three rules:
• if X and Y occur in the same process and X occurs before Y, 

then X < Y

• if M is a message, then send(M) < receive(M)

• if X < Y and Y < Z, then X < Z



5

Spring 2002 CS 461 13

Logical Time (cont)

• Given two events X and Y, either
– X < Y, or

– Y < X, or

– neither (X and Y are concurrent)

• < relation defines a partial order

• Example P1

P2

P3

A B

C D

E F

Spring 2002 CS 461 14

Message Context

• A process sends a 
message in the context 
of all the messages it 
has received.

• Group communication 
represented with a 
context graph.

• Example: 3 senders, 
denoted a, b, and c

a1

b1

c1 a2

b2 a3

b3

Spring 2002 CS 461 15

Protocol

• Each server maintains a copy of the context graph
– union of all copies equals “global graph”

• Send: mid + mid of all predecessor messages
– leaves of sender’s copy of context graph
– bounded by number of participants (why?)

• Receive: add to local copy and deliver to application
– hold back if not all predecessors are present
– ask sender to retransmit missing messages (why?)
– pass up to application in “context” order



6

Spring 2002 CS 461 16

Protocol (cont)

• Applications can inspect context graph
– leaves, precedes, prev, root, stable

• Message stability
– followed by a message from all other participants

• System can free all stable messages from its copy
– will never be asked to retransmit them

Spring 2002 CS 461 17

Host Failures

• Guarantees
– all running processes are able to continue exchanging 

messages

– a message contained in any running host’s copy will 
eventually be incorporated into every running host’s copy

• Application support
– mask out failed processes

– adjusts message stability

Spring 2002 CS 461 18

Message Order

• Context graph preserves partial order among 
messages

• Each host can produce same total order by running 
a topological sort on context graph
– incremental since messages continually arriving

• Commit next “wave” of messages to application as 
soon as one message in wave becomes stable
– know that no future messages will be at same logical time

• Membership protocol much trickier


