
1

Spring 2002 CS 461 1

Congestion Control

Outline
Queuing Discipline

Reacting to Congestion

Avoiding Congestion

Spring 2002 CS 461 2

Issues
• Two sides of the same coin

– pre-allocate resources so at to avoid congestion
– control congestion if (and when) is occurs

• Two points of implementation
– hosts at the edges of the network (transport protocol)
– routers inside the network (queuing discipline)

• Underlying service model
– best-effort (assume for now)
– multiple qualities of service (later)

Destination
1.5-Mbps T1 link

Router

Source
2

Source
1

100-Mbps FDDI

10-Mbps Ethernet

Spring 2002 CS 461 3

Framework
• Connectionless flows

– sequence of packets sent between source/destination pair
– maintain soft state at the routers

• Taxonomy
– router-centric versus host-centric
– reservation-based versus feedback-based
– window-based versus rate-based

Router

Source
2

Source
1

Source
3

Router

Router

Destination
2

Destination
1

2

Spring 2002 CS 461 4

Evaluation

• Fairness

• Power (ratio of throughput to delay)

Optimal
load Load

T
hr

ou
gh

pu
t/d

el
ay

Spring 2002 CS 461 5

Queuing Discipline
• First-In-First-Out (FIFO)

– does not discriminate between traffic sources
• Fair Queuing (FQ)

– explicitly segregates traffic based on flows
– ensures no flow captures more than its share of capacity
– variation: weighted fair queuing (WFQ)

• Problem?
Flow 1

Flow 2

Flow 3

Flow 4

Round-robin
service

Spring 2002 CS 461 6

FQ Algorithm

• Suppose clock ticks each time a bit is transmitted
• Let Pi denote the length of packet i
• Let Si denote the time when start to transmit packet i
• Let Fi denote the time when finish transmitting packet i
• Fi = Si + Pi

• When does router start transmitting packet i?
– if before router finished packet i - 1 from this flow, then

immediately after last bit of i - 1 (Fi-1)
– if no current packets for this flow, then start

transmitting when arrives (call this Ai)
• Thus: Fi = MAX (Fi - 1, Ai) + Pi

3

Spring 2002 CS 461 7

FQ Algorithm (cont)

• For multiple flows
– calculate Fi for each packet that arrives on each flow
– treat all Fi’ s as timestamps
– next packet to transmit is one with lowest timestamp

• Not perfect: can’ t preempt current packet

• Example

Flow 1 Flow 2

(a) (b)

Output Output

F = 8 F = 10
F = 5

F = 10

F = 2

Flow 1
(arriving)

Flow 2
(transmitting)

Spring 2002 CS 461 8

TCP Congestion Control

• Idea
– assumes best-effort network (FIFO or FQ routers) each

source determines network capacity for itself

– uses implicit feedback

– ACKs pace transmission (self-clocking)

• Challenge
– determining the available capacity in the first place

– adjusting to changes in the available capacity

Spring 2002 CS 461 9

Additive Increase/Multiplicative
Decrease

• Objective: adjust to changes in the available capacity
• New state variable per connection: Congest i onWi ndow

– limits how much data source has in transit

MaxWi n = MI N(Congest i onWi ndow,
Adver t i sedWi ndow)

Ef f Wi n = MaxWi n - (Last Byt eSent -
Last Byt eAcked)

• Idea:
– increase Congest i onWi ndow when congestion goes down
– decrease Congest i onWi ndowwhen congestion goes up

4

Spring 2002 CS 461 10

AIMD (cont)

• Question: how does the source determine whether
or not the network is congested?

• Answer: a timeout occurs
– timeout signals that a packet was lost
– packets are seldom lost due to transmission error
– lost packet implies congestion

Spring 2002 CS 461 11

AIMD (cont)

• In practice: increment a little for each ACK
I ncr ement = (MSS * MSS) / Congest i onWi ndow

Congest i onWi ndow += I ncr ement

Source Destination

…

• Algorithm
– increment Congest i onWi ndow by

one packet per RTT (linear increase)
– divide Congest i onWi ndow by two

whenever a timeout occurs
(multiplicative decrease)

Spring 2002 CS 461 12

AIMD (cont)

• Trace: sawtooth behavior

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

Time (seconds)

70

30
40
50

10

10.0

5

Spring 2002 CS 461 13

Slow Start

• Objective: determine the available
capacity in the first

• Idea:
– begin with Congest i onWi ndow = 1

packet
– double Congest i onWi ndow each RTT

(increment by 1 packet for each ACK)

Source Destination

…

Spring 2002 CS 461 14

Slow Start (cont)
• Exponential growth, but slower than all at once
• Used…

– when first starting connection
– when connection goes dead waiting for timeout

• Trace

• Problem: lose up to half a Congest i onWi ndow’ s
worth of data

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

70

30
40
50

10

Spring 2002 CS 461 15

Fast Retransmit and Fast Recovery

• Problem: coarse-grain
TCP timeouts lead to idle
periods

• Fast retransmit: use
duplicate ACKs to trigger
retransmission

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Retransmit
packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver

6

Spring 2002 CS 461 16

Results

• Fast recovery
– skip the slow start phase

– go directly to half the last successful
Congest i onWi ndow (sst hr esh)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

70

30
40
50

10

Spring 2002 CS 461 17

Congestion Avoidance
• TCP’s strategy

– control congestion once it happens

– repeatedly increase load in an effort to find the point at which
congestion occurs, and then back off

• Alternative strategy
– predict when congestion is about to happen

– reduce rate before packets start being discarded

– call this congestion avoidance, instead of congestion control

• Two possibilities
– router-centric: DECbit and RED Gateways

– host-centric: TCP Vegas

Spring 2002 CS 461 18

DECbit
• Add binary congestion bit to each packet header
• Router

– monitors average queue length over last busy+idle cycle

– set congestion bit if average queue length > 1
– attempts to balance throughout against delay

Queue length

Current
time

Time
Current

cycle
Previous

cycle
Averaging
interval

7

Spring 2002 CS 461 19

End Hosts

• Destination echoes bit back to source

• Source records how many packets resulted in set bit

• If less than 50% of last window’s worth had bit set
– increase Congest i onWi ndow by 1 packet

• If 50% or more of last window’s worth had bit set
– decrease Congest i onWi ndow by 0.875 times

Spring 2002 CS 461 20

Random Early Detection (RED)

• Notification is implicit
– just drop the packet (TCP will timeout)
– could make explicit by marking the packet

• Early random drop
– rather than wait for queue to become full, drop each

arriving packet with some drop probability whenever
the queue length exceeds some drop level

Spring 2002 CS 461 21

RED Details
• Compute average queue length

AvgLen = (1 - Wei ght) * AvgLen +

Wei ght * Sampl eLen
0 < Wei ght < 1 (usually 0.002)
Sampl eLen is queue length each time a packet arrives

MaxThreshold MinThreshold

AvgLen

8

Spring 2002 CS 461 22

RED Details (cont)

• Two queue length thresholds

i f AvgLen <= Mi nThr eshol d t hen

enqueue t he packet

i f Mi nThr eshol d < AvgLen < MaxThr eshol d t hen

cal cul at e pr obabi l i t y P

dr op ar r i vi ng packet wi t h pr obabi l i t y P

i f ManThr eshol d <= AvgLen t hen

dr op ar r i vi ng packet

Spring 2002 CS 461 23

RED Details (cont)
• Computing probability P

TempP = MaxP * (AvgLen - Mi nThr eshol d) /
(MaxThr eshol d - Mi nThr eshol d)

P = TempP/ (1 - count * TempP)

• Drop Probability Curve
P(drop)

1.0

MaxP

MinThresh MaxThresh

AvgLen

Spring 2002 CS 461 24

Tuning RED
• Probability of dropping a particular flow’s packet(s) is

roughly proportional to the share of the bandwidth that flow
is currently getting

• MaxP is typically set to 0.02, meaning that when the average
queue size is halfway between the two thresholds, the
gateway drops roughly one out of 50 packets.

• If traffic id bursty, then Mi nThr eshol d should be
sufficiently large to allow link utilization to be maintained at
an acceptably high level

• Difference between two thresholds should be larger than the
typical increase in the calculated average queue length in one
RTT; setting MaxThr eshol d to twice Mi nThr eshol d is
reasonable for traffic on today’s Internet

• Penalty Box for Offenders

9

Spring 2002 CS 461 25

TCP Vegas
• Idea: source watches for some sign that router’s queue is

building up and congestion will happen too; e.g.,
– RTT grows

– sending rate flattens
60

20

0.5 1.0 1.5 4.0 4.5 6.5 8.0

K
B

Time (seconds)

Time (seconds)

70

30
40
50

10

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

900

300
100

0.5 1.0 1.5 4.0 4.5 6.5 8.0

S
en

di
ng

 K
B

ps

1100

500
700

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

Time (seconds)
0.5 1.0 1.5 4.0 4.5 6.5 8.0Q

ue
ue

 s
iz

e
in

 r
ou

te
r

5

10

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

Spring 2002 CS 461 26

Algorithm
• Let BaseRTT be the minimum of all measured RTTs

(commonly the RTT of the first packet)
• If not overflowing the connection, then

Expect Rat e = Congest i onWi ndow/ BaseRTT

• Source calculates sending rate (Act ual Rat e) once per RTT
• Source compares Act ual Rat e with Expect Rat e

Di f f = Expect edRat e - Act ual Rat e
i f Di f f < αααα

i ncr ease Congest i onWi ndow l i near l y
el se i f Di f f > ββββ

decr ease Congest i onWi ndow l i near l y
el se

l eave Congest i onWi ndow unchanged

Spring 2002 CS 461 27

Algorithm (cont)

• Parameters
− αααα = 1 packet
− ββββ = 3 packets

• Even faster retransmit
– keep fine-grained timestamps for each packet
– check for timeout on first duplicate ACK

70
60
50
40
30
20
10

K
B

Time (seconds)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

C
A

M
 K

B
ps

240
200
160
120

80
40

Time (seconds)

