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Congestion Control

Outline
Queuing Discipline

Reacting to Congestion

Avoiding Congestion
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Issues
• Two sides of the same coin

– pre-allocate resources so at to avoid congestion
– control congestion if (and when) is occurs

• Two points of implementation
– hosts at the edges of the network (transport protocol)
– routers inside the network (queuing discipline)

• Underlying service model
– best-effort (assume for now)
– multiple qualities of service (later)
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Framework
• Connectionless flows

– sequence of packets sent between source/destination pair
– maintain soft state at the routers

• Taxonomy
– router-centric versus host-centric
– reservation-based versus feedback-based
– window-based versus rate-based
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Evaluation

• Fairness

• Power (ratio of throughput to delay)
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Queuing Discipline
• First-In-First-Out (FIFO)

– does not discriminate between traffic sources
• Fair Queuing (FQ)

– explicitly segregates traffic based on flows
– ensures no flow captures more than its share of capacity
– variation: weighted fair queuing (WFQ)

• Problem?
Flow 1

Flow 2

Flow 3

Flow 4

Round-robin
service
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FQ Algorithm

• Suppose clock ticks each time a bit is transmitted
• Let Pi denote the length of packet i
• Let Si denote the time when start to transmit packet i
• Let Fi denote the time when finish transmitting packet i
• Fi = Si + Pi

• When does router start transmitting packet i?
– if before router finished packet i - 1 from this flow, then 

immediately after last bit of i - 1 (Fi-1)
– if no current packets for this flow, then start 

transmitting when arrives (call this Ai)
• Thus: Fi = MAX (Fi - 1, Ai) + Pi
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FQ Algorithm (cont)

• For multiple flows
– calculate Fi for each packet that arrives on each flow
– treat all Fi’ s as timestamps
– next packet to transmit is one with lowest timestamp

• Not perfect: can’ t preempt current packet

• Example

Flow 1 Flow 2

(a) (b)

Output Output
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Flow 2
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TCP Congestion Control

• Idea
– assumes best-effort network (FIFO or FQ routers) each 

source determines network capacity for itself

– uses implicit feedback

– ACKs pace transmission (self-clocking)

• Challenge
– determining the available capacity in the first place

– adjusting to changes in the available capacity
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Additive Increase/Multiplicative 
Decrease

• Objective: adjust to changes in the available capacity
• New state variable per connection: Congest i onWi ndow

– limits how much data source has in transit

MaxWi n = MI N( Congest i onWi ndow,  
Adver t i sedWi ndow)

Ef f Wi n = MaxWi n - ( Last Byt eSent  -
Last Byt eAcked)

• Idea:
– increase Congest i onWi ndow when congestion goes down
– decrease Congest i onWi ndowwhen congestion goes up
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AIMD (cont)

• Question: how does the source determine whether 
or not the network is congested?

• Answer: a timeout occurs
– timeout signals that a packet was lost
– packets are seldom lost due to transmission error
– lost packet implies congestion
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AIMD (cont)

• In practice: increment a little for each ACK
I ncr ement  = ( MSS *  MSS) / Congest i onWi ndow

Congest i onWi ndow += I ncr ement

Source Destination

…

• Algorithm
– increment Congest i onWi ndow by 

one packet per RTT (linear increase)
– divide Congest i onWi ndow by two 

whenever a timeout occurs 
(multiplicative decrease)
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AIMD (cont)

• Trace: sawtooth behavior
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Slow Start

• Objective: determine the available 
capacity in the first

• Idea:
– begin with Congest i onWi ndow = 1 

packet
– double Congest i onWi ndow each RTT 

(increment by 1 packet for each ACK)

Source Destination

…
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Slow Start (cont)
• Exponential growth, but slower than all at once
• Used…

– when first starting connection
– when connection goes dead waiting for timeout

• Trace

• Problem: lose up to half a Congest i onWi ndow’ s 
worth of data
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Fast Retransmit and Fast Recovery

• Problem: coarse-grain 
TCP timeouts lead to idle 
periods

• Fast retransmit: use 
duplicate ACKs to trigger 
retransmission

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Retransmit
packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver
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Results

• Fast recovery
– skip the slow start phase

– go directly to half the last successful 
Congest i onWi ndow (sst hr esh)
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Congestion Avoidance
• TCP’s strategy

– control congestion once it happens

– repeatedly increase load in an effort to find the point at which
congestion occurs, and then back off

• Alternative strategy
– predict when congestion is about to happen

– reduce rate before packets start being discarded

– call this congestion avoidance, instead of congestion control

• Two possibilities 
– router-centric: DECbit and RED Gateways 

– host-centric: TCP Vegas 
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DECbit
• Add binary congestion bit to each packet header
• Router

– monitors average queue length over last busy+idle cycle

– set congestion bit if average queue length > 1
– attempts to balance throughout against delay

Queue length

Current
time

Time
Current

cycle
Previous

cycle
Averaging
interval
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End Hosts

• Destination echoes bit back to source

• Source records how many packets resulted in set bit

• If less than 50% of last window’s worth had bit set 
– increase Congest i onWi ndow by 1 packet

• If 50% or more of last window’s worth had bit set 
– decrease Congest i onWi ndow by 0.875 times
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Random Early Detection (RED)

• Notification is implicit 
– just drop the packet (TCP will timeout)
– could make explicit by marking the packet

• Early random drop
– rather than wait for queue to become full, drop each 

arriving packet with some drop probability whenever 
the queue length exceeds some drop level
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RED Details
• Compute average queue length

AvgLen = ( 1 - Wei ght )  *  AvgLen +

Wei ght  *  Sampl eLen
0 < Wei ght < 1 (usually 0.002)
Sampl eLen is queue length each time a packet arrives

MaxThreshold MinThreshold

AvgLen
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RED Details (cont)

• Two queue length thresholds

i f  AvgLen <= Mi nThr eshol d t hen

enqueue t he packet

i f  Mi nThr eshol d < AvgLen < MaxThr eshol d t hen

cal cul at e pr obabi l i t y P

dr op ar r i vi ng packet  wi t h pr obabi l i t y P

i f  ManThr eshol d <= AvgLen t hen 

dr op ar r i vi ng packet
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RED Details (cont)
• Computing probability P

TempP = MaxP *  ( AvgLen - Mi nThr eshol d) /  
( MaxThr eshol d - Mi nThr eshol d)

P = TempP/ ( 1 - count  *  TempP)

• Drop Probability Curve
P(drop)

1.0

MaxP

MinThresh MaxThresh

AvgLen
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Tuning RED
• Probability of dropping a particular flow’s packet(s) is 

roughly proportional to the share of the bandwidth that flow 
is currently getting

• MaxP is typically set to 0.02, meaning that when the average 
queue size is halfway between the two thresholds, the 
gateway drops roughly one out of 50 packets.

• If traffic id bursty, then Mi nThr eshol d should be 
sufficiently large to allow link utilization to be maintained at
an acceptably high level 

• Difference between two thresholds should be larger than the 
typical increase in the calculated average queue length in one 
RTT; setting MaxThr eshol d to twice Mi nThr eshol d is 
reasonable for traffic on today’s Internet

• Penalty Box for Offenders
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TCP Vegas
• Idea: source watches for some sign that router’s queue is 

building up and congestion will happen too; e.g.,
– RTT grows

– sending rate flattens
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Algorithm 
• Let BaseRTT be the minimum of all measured RTTs 

(commonly the RTT of the first packet)
• If not overflowing the connection, then

Expect Rat e = Congest i onWi ndow/ BaseRTT

• Source calculates sending rate (Act ual Rat e) once per RTT
• Source compares Act ual Rat e with Expect Rat e

Di f f  = Expect edRat e - Act ual Rat e
i f  Di f f  < αααα

i ncr ease Congest i onWi ndow l i near l y
el se i f  Di f f  > ββββ

decr ease Congest i onWi ndow l i near l y
el se

l eave Congest i onWi ndow unchanged
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Algorithm (cont)

• Parameters
− αααα = 1 packet
− ββββ = 3 packets

• Even faster retransmit
– keep fine-grained timestamps for each packet 
– check for timeout on first duplicate ACK

70
60
50
40
30
20
10

K
B

Time (seconds)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

C
A

M
 K

B
ps

240
200
160
120

80
40

Time (seconds)


