

CSG-based 3-D Object Recognition

Robert Osada CS598b, April 2000

Main Tasks

- Reconstruct model from data
 - Segment data into surface patches
 - Derive precedence graph
- Match models
 - Setup correspondence network
 - Define energy functional
 - Optimize

Segmentation

- Paper
 - [P. Besl, R. Jain] Segmentation Through Variable-Order Surface Fitting (IEEE 1988)
- Goals
 - Decompose surface into patches
 - Each patch is a low-order bivariate polynomial $f = a_{00} + a_{10}x + a_{01}y + a_{11}xy + ...$
 - Algorithm based <u>only</u> on the assumption of surface coherence
 - Minimize total approximation error and number of regions

Segmentation

- Algorithm initial guess
 - Compute partial derivatives
 - Smoothing and convolution operators
 - Compute mean curvature and Guassian curvature
 - Rotation, translation, scaling, and parameterization invariant

Segmentation

- Use signs of two curvatures to label surface types
 - 3²=9 types

	K>0	K=0	K<0
H<0	Peak	Ridge	Saddle Ridge
H=0	?	Flat	Minimal Surface
H>0	Pit	Valley	Saddle Valley

Fig. 1. Eight fundamental surface types from surface curvature sign.

[P. Besl]

Segmentation

- Algorithm iterative growth
 - Isolate largest connected component of same type
 - Erode region to small seed region
 - Fit plane
 - Grow region
 - Adaptively add/remove points based on error thresholds
 - Raise surface order if necessary
- Results
 - Successful in variety (40) of test images

Precedence Graphs

- Paper
 - [T. Chen, W. Lin] A Neural Network Approach to CSG-Based 3-D Object Recognition (IEEE 1994)
- Definition
 - Nodes correspond to positive or negative primitives
 - Arcs indicate order of participation (precedence) of primitives
 - Directed edges represent difference operator
 - No representation of union or intersection

Precedence Graphs

- Examples
 - \blacksquare A \cup B
 - A (B ∪ C)
 - $A \cap B = A (A-B)$

- (+) **A**
- (+) B

- Uniqueness?
 - Maybe not, but less constrictive than CSG's

Precedence Graphs

- Additional geometric information
 - Undirected edges represent positive objects belonging to same object
 - Connected components define sub-objects
- Derivation
 - Assume quadratic patches
 - $ax^2+by^2+cz^2+dxy+eyz+fzx+gx+hy+iz = 1$
 - Translate and rotate coordinates
 - $a'x'^2+b'y'^2+c'z'^2+g'=1$

Precedence Graphs

- Derivation
 - Combine planes to form primitives
 - Ellipsoid, cylinder, cone, box, plane
 - All primitives are convex, so if surface is concave then primitive is negative
 - Establish relations between primitives
 - If a primitive is inside an oppositely signed primitive, add a directed edge
 - If two positive primitives are neighbors, add an undirected edge

Matching

- Network
- Constraints
- Energy
- Optimization
- Similarity rate

Matching Network

- Two-dimensional array. v_{xi} represents the degree of supporting the proposition that primitive x in the scene matches primitive i in the model
 - 0 <= v_{xi} <= 1
 - Lift concept of matching from discrete domain to fuzzy domain

Scene

Matching Constraints

- Validity of match
 - A scene node can map to only one model node, and a model node cannot be mapped by more than one scene node
- Similarity of primitives
 - Same sign, same type, similar size
- Preservation of precedence graph
 - Primitives should have the same precedence
 - Gluing arcs should correspond
- Preservation of geometry
 - Minimize distances between reference points and angles between reference vectors of primitives

Matching Energy

$$E = \frac{A}{2} \sum_{x,i,y \neq x} v_{xi} v_{yi} + \frac{B}{2} \sum_{x,i} N_{xi} v_{xi} + \frac{C}{2} \sum_{x,i,y \neq x,j \neq i} M_{xiyj} v_{xi} v_{yj}$$

 Each term enforces difference matching constraints

Matching Energy

$$E = \underbrace{\frac{A}{2} \sum_{x,i,y \neq x} v_{xi} v_{yi}}_{x,i,y \neq x} + \frac{B}{2} \sum_{x,i} N_{xi} v_{xi} + \frac{C}{2} \sum_{x,i,y \neq x,j \neq i} M_{xiyj} v_{xi} v_{yj}$$

 Discourages two scene primitives from mapping to the same model primitive

Matching Energy

$$E = \frac{A}{2} \sum_{x,i,y \neq x} v_{xi} v_{yi} + \underbrace{\frac{B}{2} \sum_{x,i} N_{xi} v_{xi}}_{xi} + \underbrace{\frac{C}{2} \sum_{x,i,y \neq x,j \neq i} M_{xiyj} v_{xi} v_{yj}}_{xi}$$

- Enforces primitive similarity constraint
 - N_{xi} compares types, sizes, and signs of scene primitive x and model primitive i
 - -1 if similar, 1 otherwise

Matching Energy

$$E = \frac{A}{2} \sum_{x,i,y \neq x} v_{xi} v_{yi} + \frac{B}{2} \sum_{x,i} N_{xi} v_{xi} + \frac{C}{2} \sum_{x,i,y \neq x,j \neq i} M_{xiyj} v_{xi} v_{yj}$$

- Enforces precedence and geometry constraints
 - M_{xivi}=-1 initially
 - Set to 1 if graph topology is violated
 - Set to 1 if distances between reference points or orientations are above threshold

Optimization

- Papers
 - [S. Kirkpatrick, et al] Optimization by Simulated Annealing (Science 1983)
 - [G. Bilbro, et al] Optimization by Mean Field Annealing (Advances in Neural Information Processing Systems, 1989)
- Iterative algorithms
 - Can optimize non-linear functions, but... get stuck in local optimum

Optimization Theory

- Simulated annealing
 - Crystallization Analogy
 - Carefully lower temperature (annealing)
 - Algorithm
 - Given objective function and concise description of configuration, generate rearrangements of configuration
 - If $\Delta E <= 0$, accept new configuration, if $\Delta E > 0$, accept with probability $\sim \exp(-\Delta E/T)$
 - T follows annealing schedule
 - Results
 - Temperatures prevents algorithm from getting stuck, provides extra control, finds better solutions
 - Applied to a wide variety of NP-complete problems, proves a "natural framework for heuristic design"

Optimization Theory

- Mean field annealing
 - Similar to simulated annealing, but replaces discrete degrees of freedom with averages values
 - Mean field = effective field
 - How does a variable/parameter/spin effect the energy?
 - Calculate the interaction of a single variable and the rest of the system
 - Update to "expected value" based on mean field approximation
 - Details in paper... thermodynamic background helps
 - Claim that equilibrium is achieved 1-2 orders faster in certain applications

Matching Optimization

$$E = \frac{A}{2} \sum_{x,i,y \neq x} v_{xi} v_{yi} + \frac{B}{2} \sum_{x,i} N_{xi} v_{xi} + \frac{C}{2} \sum_{x,i,y \neq x,j \neq i} M_{xiyj} v_{xi} v_{yj}$$

$$= \sum_{x,i} v_{xi} \left(\frac{A}{2} \sum_{y \neq x} v_{yi} + \frac{B}{2} \sum_{x,i} N_{xi} + \frac{C}{2} \sum_{x,i,y \neq x,j \neq i} M_{xiyj} v_{yj} \right)$$

$$= \sum_{x,i} v_{xi} E_{xi}$$

 Isolate interaction a single variable and the rest of the system

Matching Optimization

- Pick random row, update v_{xi} according to mean field annealing
- Repeat until convergence

$$v_{xi} \propto \exp(-\frac{E_{xi}}{T})$$

$$v_{xi} = \exp(-\frac{E_{xi}}{T}) / \sum_{j} \exp(-\frac{E_{xj}}{T})$$

Matching Similarity Rate

- After optimization, consider objects matched if $v_{xi}>e_1$, not matched if $v_{xi}<e_2$, undecided otherwise
- Estimate 3D transforms between matched primitives
- Match error

$$-\frac{\#match}{\#primitives} + w_1 Err_{rot} + w_2 Err_{trans}$$

Ideas

- Differential geometry used to help segment surfaces
- Fuzzy correspondences between primitives
- Energy functions combines matching constraints
- Standard optimization techniques used to find best matching