
1

Implicit Surfaces

Misha Kazhdan

CS598b

Definition:

Given a function F the implicit surface S generated
by this function is the set of zero points of F:

The interior I is the set of points on which F is
negative:

(){ }0 == pFpS

(){ }0 <= pFpI

2

Examples:

• Algebraic surfaces: Given by polynomial
equations.

– Quadric Surfaces (easy eigenvalue analysis)

– Higher Degree Surfaces

• Skeletons (minimal distance to surface)

• Metaballs/Blobbies/Soft-Objects (point charge
model; field functions)

• Convolution Surfaces

Skeleton Blended

3

Blending Arbitrary Skeletons:

→

The Bulge Problem:

→

4

[Bloomenthal. Introduction to Implicit Surfaces. Figure 7.16]

[http://www.ugcs.caltech.edu/~andrei/papers/seafood/
horse.gif]

5

[http://www.ugcs.caltech.edu/~andrei/papers/seafood/

crab.gif]

Arguably, the most complicated convolution surface out there. (At least
that’s what they claim.)

Reconstruction Methods

• Point Charge Model

– Iteratively find new points by splitting old
ones

– Generate a list possible points and iteratively
choose from the list

• Local reconstruction of the distance function

6

[Muraki. Volumetric Description of Range Data using
“ Blobby Model” . Computer Graphics, Volume 25,
Number 4,July 1991]

Problem:

Given a collection of range data points { qi} and
“some” normal information, define an implicit
function interpolating these data points.

Idea of the Solution:

To iteratively find a set of points { pi} with
associated field functions { fi} such that the
implicit function:

interpolates the datapoints and conforms with the
normal information.

At each iteration, some point is split in two, and the
location of the two points, and their associated
field functions are optimized to minimize an
energy function.

() ()∑ −−=
i

ii qxfxF 1

7

[Muraki]

Face 1:

8

Face 2:

Face 3:

9

Head 1:

Head 2:

10

Head 3:

Energy Function:

The energy function is a weighted sum of three
components corresponding to three different
properties minimized:

• “Distance” of the data points { qi} from the
implicit surface.

• Discrepancy of the point normal and the
surface gradient.

• The overall strength of the charge.

11

• Face: 256x256 data points (It took several days to
get the N=243 model)

• Head: 5334 data points.
Problems:
• Computationally very slow. (Especially since a

full optimization is run for each point in the list
before selecting the one split.)

• The new point chosen is restricted to starting off
from an existing point.

• Not usable in the case that there is no normal data
(as you might be modeling the outside instead of
the inside.)

• The field functions do not have compact support
so this method does not really allow for local
control.

Reconstruction Methods

• Point Charge Model

– Iteratively find new points by splitting old ones

– Generate a list possible points and iteratively
choose from the list

• Local reconstruction of the distance function

12

[Bittar, Tsingos and Gascuel. Automatic Reconstruction of
Unstructured 3D Data:Combining Medial Axis and
Implicit Surfaces]

Problem:

Given a collection of data points { qi} to locate
the interior of the surface and define an
implicit function interpolating the data
points.

(This method seeks to improve on Muraki’s
method by initially generating a list of
potential skeleton points and using a field
function with compact support.)

Idea of the Solution:

• Voxelize at appropriate resolution.

• Propagate external point information.

• A subset of interior points is chosen as candidate
skeleton points.

• From this set, points are chosen iteratively.

13

Potential Skeleton List Generation:

• Each interior voxel has a maximal radius.

• If the maximal sphere about the voxel is not
contained in the maximal sphere about any other
voxel, this voxel is added to the candidate list.

[Bittar, Tsingos, and Gascuel]

14

[Bittar, Tsingos, and Gascuel]

Potential Skeleton List Generation:

• Each interior voxel has a maximal radius.

• If the maximal sphere about the voxel is not
contained in the maximal sphere about any other
voxel, this voxel is added to the candidate list.

15

16

17

The field function used is:

[]
() []



î






∈−
−

−+−
∈++−

=

otherwise0

, if
)(

3)(
,0 if1

)(2

3
RerRr

Re

ReReke
erkekr

rf

Resolution Specification:

Let g(p) be the function giving the number of
candidate skeleton points for a specified
resolution:

[Bittar, Tsingos, and Gascuel]

The resolution chosen is half the resolution at which
this function attains its maximum.

18

19

20

[Bittar, Tsingos, and Gascuel]

[Bittar, Tsingos, and Gascuel]

21

[Bittar, Tsingos, and Gascuel]

The Iterative Process:

Each potential skeleton point has a “select”
flag associated to it. (Specifying if this point
has been included in the final skeleton list.)

Each data point has a “select” flag associated
to. (Specifying if this point has been fit in
this step of the iteration.)

22

Upon each iteration:
• Set all of the data point “select” flags to “off” .
• While there are data points with “select” flag set to

off:
– Calculate the error term for each potential

skeleton point with “select” flag set to off.
– For potential skeleton point with highest error

term:
• Set the “select” flag for this potential

skeleton point to “on”.
• Add the the skeleton point and the associated

function to the list
• Set the “select” flag to “on” for all data

points within the area of influence of the
skeleton points.

• Holding the position of the newly added points
constant, optimize their associated field function.

• Optimize all parameters of all variables.

23

Advantages:

• This method defines a quick way to select new
primitives.

• More than one primitive can be added at each
iteration resulting in substantially fewer iterations.

• Each skeleton points only contributes to the
implicit function within a bounded region.

[Bittar, Tsingos and Gascuel]

24

Reconstruction Methods

• Point Charge Model

– Iteratively find new points by splitting old ones

– Generate a list possible points and iteratively
choose from the list

• Local reconstruction of the distance function

[Turk, O’Brien. Variational Implicit Surfaces]

[Yngve, Turk. Creating Smooth Implicit Surfaces
from Polygonal Meshes]

Problem:

Given a mesh representation of a solid object,
to define an implicit function describing the
object.

25

Idea of the Solution:

To create a function which approximates the signed
distance function near the surface of the object
(and does not introduce zeros away from it) using
radial basis functions and a linear term.

Upon each iteration, new points are added to the list
of interpolated points with associated values.
These points are:

• Points on the mesh which fall far from the implicit
surface previously defined (with an associated
zero value).

• Points on the implicit surface previously defined
which fall from the triangle mesh (with an
associated value equal to the signed distance of the
point from the mesh).

Distance is measured as real distance divided by the
radius of regularity to punish errors around
regions of high curvature with greater severity.

26

Original Surface
[Yngve and Turk]

Implicit Surface
[Yngve and Turk]

27

[Yngve and Turk]

[Yngve and Turk]

28

Radius of Regularity

Given a radial basis function and a collection of
points { qi} with associated values { ci} , solve for
values of { di} and { p0,p1,p2,p3} such that:

Φ

zyx
j

jj qpqpqppqqdqF 3210)()(++++−Φ= ∑

29

Setting:

this amounts to solving:

)(jiij qq −Φ=Φ

































=

































































ΦΦΦ

ΦΦΦ
ΦΦΦ

0

0

0

0

0000

0000

0000

0000111

1

1

1

2

1

3

2

1

0

2

1

21

21

21

21

22222221

11111211

kk

z
k

zz

y
k

yz

x
k

xx

z
k

y
k

x
kkkkk

zyx
k

zyx
k

c

c

c

p

p

p

p

d

d

d

qqq

qqq

qqq

qqq

qqq

qqq

��

�

�

�

�

�

�������

�

�

It is possible to use pretty much any radial function.
The authors choose one that guarantees
minimization of overall curvature of the implicit
surface.

For the 2D case, this function is:

For the 3D case, this function is:

() ()xxx log
2=Φ

() 3
xx =Φ

30

Initial attempt. [Yngve and Turk]

Fourth Iteration. [Yngve and Turk]

31

Tenth Iteration. [Yngve and Turk]

Eighteenth Iteration. [Yngve and Turk]

32

Number of polygons: 2834

Iterations to Finish: 22

Constraints (z/e/i) : 327/93/83

Total Time: ~83 minutes

Discussion

Muraki’s Method:

- Very slow

- Field functions do not have compact support

- Initial starting point may be bad

+ Does not depend on resolution density

+ Gives a hierarchy of points (as only new points are
optimized)

+ Inherently describes point distribution.

33

Bittar et al’s Method:

- Highly dependent on resolution density

- Does not give a hierarchy of points

+ Fast

+ Inherently describes point distribution

Turk et al’s Method:

- Does not carry information about the points

- Very laborious (generating distance functions on each
iteration)

+ Takes curvature into account

+ Seems capable of modeling rather complex surfaces.

Why should we care about implicit surfaces?
- They are natural objects to use for the description of

surfaces via skeletons. (The skeleton of a surface being a
simplification, it might be substantially easier to
compare skeletons.)

- Allows for nice warping between objects of different
topologies:

34

- Allows for nice simulation of physical properties:

