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Definition:
Given afunction F the implicit surface S generated
by thisfunction is the set of zero points of F:

s={p|F(p)=0}

Theinterior | isthe set of pointsonwhich F is
negative:

| ={p|F(p)<0}




Examples.

» Algebraic surfaces. Given by polynomial
eguations.

— Quadric Surfaces (easy eigenvalue analysis)
— Higher Degree Surfaces
» Skeletons (minimal distance to surface)

» Metaballs/Blobbies/Soft-Objects (point charge
model; field functions)

» Convolution Surfaces

Skeleton Blended




Blending Arbitrary Skeletons
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The Bulge Problem:
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[Bloomenthal. Introduction to Implicit Surfaces. Figure 7.16]
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[ http://www.ugcs.cal tech.edu/~andrei/papers/seaf ood/
horse.gif]




[ http://www.ugcs.cal tech.edu/~andrei/papers/seaf ood/

Arguably, the most complicated convolution surface out there. (At least
that's what they claim.)

Reconstruction M ethods
* Point Charge Model

— Iteratively find new points by splitting old
ones

— Generate alist possible points and iteratively
choose from the list

» Local reconstruction of the distance function




[Muraki. Volumetric Description of Range Data using
“ Blobby Model” . Computer Graphics, Volume 25,
Number 4,July 1991]

Problem:

Given acollection of range data points { ¢} and
“some” normal information, define an implicit
function interpolating these data points.

|dea of the Solution:

To iteratively find a set of points {p,} with
associated field functions {f} such that the
implicit function:

F(x)=1- Z f,{x-al)

Interpol ates the datapoints and conforms with the
normal information.

At each iteration, some point is split in two, and the
location of the two points, and their associated
field functions are optimized to minimize an
energy function.




Define the initial value of Py from the
range data

Fit Py to the range data by solving the,
energy minimization problem.

I

Append Py to the primitive list. ‘

}—

Select a primitive P; from the primitive
list.

Split P; into P/ and P{'. l

I

Delete P; from primitive list and append
P! and P!' to the list.

]

Fit P{ and P’ to the range data by solv-
ing the energy minimization problem.

[Muraki]

Is the energy
small enough?
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Energy Function:

The energy function is aweighted sum of three
components corresponding to three different
properties minimized:

+ “Distance’ of the datapoints{q} from the
implicit surface.

» Discrepancy of the point normal and the
surface gradient.

» Theoverdl strength of the charge.
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Face: 256x256 data points (It took several daysto
get the N=243 model)

Head: 5334 data points.

Problems:

Computationally very slow. (Especialy since a
full optimization is run for each point in the list
before selecting the one split.)

The new point chosen is restricted to starting off
from an existing point.

Not usable in the case that there is no normal data
(as you might be modeling the outside instead of
theinside.)

Thefield functions do not have compact support
so this method does not really allow for local
control.

Reconstruction Methods
Point Charge Model
— Iteratively find new points by splitting old ones

— Generateallist possible points and iteratively
choose from thelist

Local reconstruction of the distance function
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[Bittar, Tsingos and Gascuel. Automatic Reconstruction of
Unstructured 3D Data: Combining Medial Axis and
Implicit Surfaces)

Problem:

Given a collection of data points{q;} to locate
the interior of the surface and define an
implicit function interpolating the data
points.

(This method seeks to improve on Muraki’s
method by initially generating alist of
potential skeleton points and using afield
function with compact support.)

|dea of the Solution:
» Voxelize at appropriate resolution.
» Propagate external point information.

» A subset of interior pointsis chosen as candidate
skeleton points.

» From this set, points are chosen iteratively.
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Potential Skeleton List Generation:
e Eachinterior voxel has amaximal radius.

* If the maximal sphere about the voxel is not
contained in the maximal sphere about any other
voxel, this voxel is added to the candidate list.

[Bittar, Tsingos, and Gascuel]
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[Bittar, Tsingos, and Gascuel]

Potential Skeleton List Generation:
e Eachinterior voxel has amaximal radius.

* If the maximal sphere about the voxel is not
contained in the maximal sphere about any other
voxel, this voxel is added to the candidate list.
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Thefield function used is:

O kr +ke+1 if r0J0,€]
()= 4 R**R( e it ofeR]
N (e— R)
FO otherwise
po'renﬁol‘

isovalue |-

R ditance

Resolution Specification:

Let g(p) be the function giving the number of
candidate skeleton points for a specified
resol ution:

\
I — vertebra
i - torso

i

1 - torus

]

i H
> H
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[Bittar, Tsingos, and Gascuel]

The resolution chosen is half the resolution at which
this function attains its maximum.
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[Bittar, Tsingos, and Gascuel]

(a) 124 spheres

[Bittar, Tsingos, and Gascuel]

(b) 1050 spheres
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[Bittar, Tsingos, and Gascuel]

(c) 1191 spheres

The lterative Process:

Each potential skeleton point has a“select”
flag associated to it. (Specifying if this point
has been included in the final skeleton list.)

Each data point has a“select” flag associated
to. (Specifying if this point has been fit in
this step of the iteration.)

21



Upon each iteration:

o Set dl of the data point “select” flagsto “off”.

» While there are data points with “select” flag set to
off:

— Calculate the error term for each potential
skeleton point with “select” flag set to off.

— For potential skeleton point with highest error
term:

* Set the “select” flag for this potential
skeleton point to “on”.

» Add the the skeleton point and the associated
function to the list

» Set the “select” flag to “on” for all data
points within the area of influence of the
skeleton points.

 Holding the position of the newly added points
constant, optimize their associated field function.

* Optimize al parameters of all variables.
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Advantages.

» This method defines a quick way to select new
primitives.

» More than one primitive can be added at each
iteration resulting in substantially fewer iterations.

» Each skeleton points only contributes to the
implicit function within a bounded region.

[Bittar, Tsingos and Gascuel]

number of medial axis n. of medial number of final calculation  number
object data points  resolution = axis spheres  skeletons Energy £  time (sec) of passes

torus 4176 22 172 12 5.46e™* 163 1
torso 2027 26 181 42 3.78¢7% 843 3
Y 871 14 16 10 2.74e% 194 1

vertebra 19837 42 1050
2037 46 3.14e™? 3135 1
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Reconstruction Methods
* Point Charge Model
— Iteratively find new points by splitting old ones

— Generate alist possible points and iteratively
choose from the list

» Local reconstruction of the distance function

[Turk, O’ Brien. Variational Implicit Surfaces]

[Yngve, Turk. Creating Smooth Implicit Surfaces
from Polygonal Meshes]

Problem:

Given a mesh representation of a solid object,
to define an implicit function describing the
object.
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| dea of the Solution:

To create afunction which approximates the signed
distance function near the surface of the object
(and does not introduce zeros away from it) using
radial basis functions and alinear term.

Upon each iteration, new points are added to the list
of interpolated points with associated val ues.
These points are:

* Points on the mesh which fall far from the implicit
surface previoudy defined (with an associated
zero value).

 Points on the implicit surface previously defined
which fall from the triangle mesh (with an
associated value equal to the signed distance of the
point from the mesh).

Distance is measured as real distance divided by the
radius of regularity to punish errors around
regions of high curvature with greater severity.
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Origina Surface
[Yngve and Turk]

Implicit Surface
[Yngve and Turk]
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[Yngve and Turk]

[Yngve and Turk]

27



Radius of Regularity

Given aradial basis function ® and a collection of
points{q} with associated values{c}, solve for
values of {d} and { po,p,.P,Ps} such that:

F(a) =) d;i®(q-q;)+ P+ P,d, + PoA, + PaC,
J
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Setting:
O, =d(qg —q;)
this amounts to solving:
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It is possible to use pretty much any radial function.
The authors choose one that guarantees
minimization of overall curvature of the implicit
surface.

For the 2D casg, thisfunction is:
2
®(x)=[4" log(x])

For the 3D case, thisfunctison IS
®(x)=[¥
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Initial attempt. [Yngve and Turk]

Fourth Iteration. [Yngve and Turk]
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Tenth Iteration. [Yngve and Turk]

Eighteenth Iteration. [Y ngve and Turk]
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Number of polygons: 2834

[terations to Finish: 22

Constraints (z/€fi) 327/93/83

Total Time: ~83 minutes
Discussion

Muraki’s Method:

- Very ow

- Field functions do not have compact support

- Initia starting point may be bad

+ Does not depend on resolution density

+ Givesahierarchy of points (as only new points are
optimized)

+ Inherently describes point distribution.
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Bittar et a’s Method:

- Highly dependent on resolution density
- Does not give ahierarchy of points

+ Fast

+ Inherently describes point distribution

Turk et a’s Method:

- Does not carry information about the points

- Very laborious (generating distance functions on each
iteration)

+ Takes curvature into account

+ Seems capable of modeling rather complex surfaces.

Why should we car e about implicit surfaces?

- They are natural objects to use for the description of
surfaces via skeletons. (The skeleton of a surface being a
simplification, it might be substantially easier to

compare skeletons.)
- Allowsfor nice warping between objects of different
topologies:
- 1/:_-—:\
= =

1
/
L4
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Allows for nice simulation of physical properties:

- Charge

. - Charge
. - Charge

a

+Charge (with small distnbution)




