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Solutions to Final Exam

Problem 1 ∑
n≥2

bnx
n =

∑
n≥2

bn−1x
n +

∑
n≥2

xn
∑

1≤k≤n−1

bkbn−1−k

= x
∑
n≥2

bn−1x
n−1 + x

∑
m≥1

xm
∑

1≤k≤m
bkbm−k.

This implies

B(x)− b0 − b1x = x(B(x)− b0) + x(b1x+ b2x
2 + · · ·)(b0 + b1x+ b2x

2 + · · ·),

ie,
B(x)− 1− 2x = x(B(x)− 1) + x(B(x)− 1)B(x).

This leads to xB(x)2 −B(x) + (1 + x) = 0, and hence using B(0) = b0 = 1 we have

B(x) =
1−

√
1− 4x(1 + x)

2x
.

Problem 2

(a) For n = 1, Gn consists of two isolated vertices and is thus by definition Eulerian. For
n > 1, Gn is Eulerian since (A) it is connected (vertex 1 is connected to vertex n + 1
through 1− 2− (n + 1), and vertex 1 has an edge to each of the remaining vertices) and
(B) every vertex has even degree (in fact 2n− 2).

(b) For n = 1, Gn consists of two isolated vertices and has no Hamiltonian circuit. For
n > 1, Gn has the following Hamiltonian circuit 1, 2, 3, · · · , n− 1, n, n+ 1, n+ 2, · · · , 2n, 1.

(c) The answer is ω(Gn) = n. Note that ω(Gn) ≥ n since {1, 2, · · · , n} is a clique;
ω(Gn) < n + 1 since any clique can contain at most one of the vertices i, n + i for each
1 ≤ i ≤ n.

(d) The answer is χ(Gn) = n. Note that χ(Gn) ≥ n since {1, 2, · · · , n} is a clique and thus
each vertex in it has to be painted with a different color; χ(Gn) ≤ n since we can just
paint both vertices i, n+ i with color i, for each 1 ≤ i ≤ n.

Problem 3 Let E0 = {{4n + 1, n}, {4n + 1, 2n}, {4n + 1, 3n}, {4n + 1, 4n}}, and

E1 = {{4n, 1}, {1, 2}, {2, 3}, · · · , {n− 1, n}},
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E2 = {{n, n + 1}, {n + 1, n+ 2}, {n + 2, n+ 3}, · · · , {2n− 1, 2n}},
E3 = {{2n, 2n + 1}, {2n + 1, 2n + 2}, {2n + 2, 2n + 3}, · · · , {3n− 1, 3n}},
E4 = {{3n, 3n + 1}, {3n + 1, 3n + 2}, {3n + 2, 3n + 3}, · · · , {4n− 1, 4n}}.

Then E = ∪0≤i≤4Ei.

A spanning tree of Hn has 4n edges, and can be specified by the 4 edges missing from
E. For α ∈ {0, 1, 2, 3, 4}, let sn,α be the number of spanning trees of Hn for which α of
the missing edges are from E0. Then

sn =
∑

0≤α≤4

sn,α.

Clearly, sn,4 = 0 since at least one edge from E0 is needed to keep vertex 4n+ 1 from
being isolated.

To calculate sn,3, we count first how many spanning trees there are that contain {4n+
1, n} but no other edge from E0. A spanning tree is now specified by the one missing edge
from ∪1≤i≤4Ei, so that number is | ∪1≤i≤4 Ei| = 4n. We can prove the same result if we
count the number of spanning trees that contain any one specific edge but no other edges
in E0. Thus,

sn,3 = 4 · 4n = 16n.

To calculate sn,2, let an be the number of spanning trees containing {4n+ 1, n}, {4n+
1, 2n} but no other edges in E0; let bn be the number of spanning trees containing {4n+
1, n}, {4n + 1, 3n} but no other edges in E0. Clearly,

sn,2 = 4an + 2bn.

We compute an. A spanning tree of this type is specified by a missing edge chosen
from E2, and a missing edge from E1 ∪E3 ∪E4. Thus,

an = |E2| · |E1 ∪E3 ∪E4| = 3n2.

Similarly,
bn = |E2 ∪E3| · |E1 ∪E4| = 4n2.

This leads to
sn,2 = 4 · 3n2 + 2 · 4n2 = 20n2.

To calculate sn,1, let cn be the number of spanning trees containing {4n+ 1, n}, {4n+
1, 2n}, {4n + 1, 3n} but no other edges in E0. Then sn,1 = 4cn. To compute cn, note that
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such a spanning tree is specified by a missing edge from each of the sets E2, E3, E4 ∪ E1.
Thus, cn = |E2| · |E3| · |E4 ∪E1| = 2n3. Hence,

sn,1 = 4 · 2n3 = 8n3.

To calculate sn,0, note that such a spanning tree is specified by a missing edge from
each of the sets E1, E2, E3, E4. Thus,

sn,0 = |E1| · |E2| · |E3| · |E4| = n4.

Putting everything together, we have

sn =
∑

0≤α≤4

sn,α = n4 + 8n3 + 20n2 + 16n.

3


