Lecture 23. Viruses and Secret Messages

®* Remember sum toy?

OE

OE: BO0O1 RO <- 01

OF: B10A RlL <- 0A

10: B201 R2 <- 01

11: B300 R3 <- 00

12: 2110 Rl <- RL - RO
13: 6118 junmp to 18 if RL <O
14: 1332 R3 <- RB+ R2
15: 1220 RR <- R + RO
16: 2110 Rl <- RL - RO
17: 5013 jump to 13
18: 4302 print R3

19: 0000 hal t

starting address
RO holds 1
RLis n

R2 is i

R3 is sum

n__

if (n <0) goto End
sum += |

| ++

n--

goto Top

print sum

% /u/cs217/bin/toy /u/cs217/toy/sumtoy

0037

®* Suppose an unknown

87. 8088 RO <- 88

88: B108 Rl <- 08 8888
89: F201 R2 <- RO<<R1 0037
8A: (002 RO <- ROMR2

8B: 4002 print RO

8C. 500E jump to OE

87

December 12, 1996 9:44 AM

source modifies sum t oy by appending the following code
% /u/cs217/bin/toy /u/cs217/toy/sumtoy

sum t oy is infected with the ‘8888’ virus

December 12, 1996 9:44 AM

Infection Routes

® |f avirus Vcan find a writable executable file P, it may be able to embed itself in P

infect(P,V) A copy of Pwith Vembedded so V gets initial control

V's execution can be arbitrarily complex, perhaps involving self- ﬂemacs
modifying code to cover its tracks —
®* When infect(P,V) runs, Vcan do anything P can do, perhaps without
visible effects
Print ‘8888’
Print
| ogi n:
On some other computer and wait for a user id; then print
Passwor d:
Snarf the password entered, spawn another process running / bi n/ | ogin,

and leave town with a fresh user id and password; user just sees
| ogi n:
Scramble/delete your files

Spawn a separate process running itself and find other executable files to infect

December 12, 1996 9:44 AM

Detecting Viruses
® Given a program P, how can you tell if it's infected? You can’t
® Virus detection software looks for occurrences of specific viruses
e.g.,
Is the instruction at location 87,5 = 808847 ‘Infected with the 8888 virus’
Oh oh... Viruses embed themselves in different ways and at different locations
Must update virus detection software on a regular basis (daily?)
Virus detection software does not solve the general problem ‘is P infected?’
® Suppose you have two versions of supposedly the same program, P; and P,
Which one of P, or P, is infected?
Do P; and P, produce the same output? (Even if one is infected)

Both are unsolvable problems ala the Halting Problem

® |sthere any hope?

Intractable problems — those with only exponential-time algorithms — come to
the rescue

December 12, 1996 9:44 AM

Fingerprints
® Suppose that given a file P, H(P) is a relatively small number that ‘characterizes’ P
H(/ u/ cs126/ exanpl es/ conpi | e. c) =364BFFB1 4
H provides a fingerprint of / u/ cs126/ exanpl es/ conpil e.c
Accept P,, a copy of R onlyif H(P,) = 364BFFB1 44

® Hmust be a gne-way hash function with the following properties

Given P, it must be easy to compute H(P)

Given H(P) , it must be computationally infeasible to reconstruct P

Given P and avirus V, it must be computationally infeasible to arrange for
H(infect(P,V)) = H(P); that is, to find two bit strings with equal fingerprints

® Good one-way hash functions produce fingerprints with at least 128 bits
MD5(conpi | e. c) 979a7c5c ae9f 12e2 702f c6ad 9ad4493a
SHA(conpi | e. ¢c) 85025ddc bb5c8da7 44598f e0 d8b5el6d a75ch560

December 12, 1996 9:44 AM

Fingerprints on the Internet

% ftp ftp.cs. princeton. edu
ftp> cd /pub/packages/cii
ftp> Is

READNVE

ciilO.tar.gz

ciilO.tar.Z

ciil0.zip

ftp> get README | nore

The distribution directory contains the followng files and
directories. MD5 fingerprints for the files in this directory are
i sted bel ow.

MD5 (ciilO.tar.Z) = ba5b3c3b6c43061e4519¢85f 103be606
MD5 (ciilO.tar.gz) = e3769aeca75ec52427e1b807e02aae3e
MD5 (ciil0.zip) = fa71f475c97a4bf ae66767012367c77f
Sat Aug 24 13:15:49 EDT 1996

ftp> get ciil0.zip

ftp> quit

% nd5 cii10.zip

MD5 (ciil0.zip) = fa71lf475c97a4bf ae66767012367c77f

® This isn’t foolproof — intruders can intercept Internet packets and substitute
different fingerprints

December 12, 1996 9:44 AM

Cryptography

® A cryptosystem keeps secret messages (and files) from prying eyes

Secret Key Secret Key
v v
—Plaintext— Ciphertext— —Plaintext—»
Encryption Decryption
‘Please send money’ 24 F8 A7 86 63 2E 28 OA ‘Please send money’

68 25 B1 73 5F EO 70 99 E2
Key: 01 23 45 67 89 AB CD EF

® Modern cryptosystems exclusive-OR key with plaintext: C=P" K

voi d encrypt (char *buf, int len, char *key, int keylen) {
int i = 0;

for (i =0; len-- >0; i = (i + 1)% eyl en)
*buf ++ *= key[i];
}

Works for encryption and decryption: C* K=(P*" K)* K=P"* (K" K)=P" 0=P!

Watch out! Sending many Os in plaintext gives attackers pure key: C=0" K=K

December 12, 1996 9:44 AM

Cryptography, cont’d

Repeated use of a relatively short key isn’t secure; most systems use the key to
generate a long stream of pseudo-key, which is XOR'd with the plaintext

Assume the worst: Attackers know the algorithm, the length of the key, and have
the ciphertext

Security rests on the strength of the algorithm and the security of the key

Best systems force attackers to use jnefficient algorithms, which require trying try
all 2" n-bit keys; just use large n

Designing secure cryptosystems sounds easy, but it's not; don’t trust amateurs!

Key distribution is just as hard as encryption: What's the best way to exchange
keys with your trusted correspondents and keep them secret? There isn’t one...

For lots of details, read B. Schneier, Applied Cryptography: Protocols, Algorithms,
and Source Codein C, 2nd ed., Wiley, 1996

December 12, 1996 9:44 AM

Public-Key Cryptosystems
® Public-key cryptosystems avoid the key distribution problem by using two keys

Everyone knows your public key, P

Only you know your secret key, S

To send M. Send Py (M) via any medium
To read M: | read Sy, (M)

® List public keys in the phone book, or its equivalent

% finger -1 drh@s. princeton. edu

----- BEG N PGP PUBLI C KEY BLOCK- - - - -

Version: 2.6.1

NMBNAI LuT8gAAAECAKBTOxmBQ6XhoJ Xr GPt DKzhZkl qSRh3pM nt 8nUh1nSf Byec
KittyHO2STppLwncD47) 8KK6Cnbhri yzusnX/ hkABREJkRhdm ki Fl ul EhhbnNv
bi ABZHIoQG\zLnByaWsj ZXRvbi 5| ZHU+

=JFCd

----- END PGP PUBLI C KEY BLOCK- - - - -

® For all public-key algorithms

S(P(M)) = M for all M

All S, P pairs must be distinct

Deriving Sfrom P must be as hard as reading M
P(M) and S(M) must be efficient

December 12, 1996 9:44 AM

RSA Public-Key Cryptosystem

The RSA cryptosystem uses arithmetic on very large integers
P is N,p
S is N,s where N = 200 digits, p and s =100 digits

To choose N, p, s

Pick 3 100-digit secret prime numbers, x, y, s X=47,y=79,s =97
The largestis s

N=xxy N=47x79=3713
Choosepsothat(pxs)mod ((x-1(y-1) =1 p*x97 mod (46 x 78) =1

37 x97 mod 3588 =1
3589/3588 =1 remainder 1

Attackers see only Nand p
To find s, attackers must factor Ninto its prime factors x and y
It is believed, but not proven, to be infeasible to factor N if it's sufficiently large

Factoring 200-digit numbers probably takes =107 years

Are there enough primes for everyone? Yes: =100 primes with < 512 bits (=155
decimal digits)

December 12, 1996 9:44 AM

RSA Encryption
® To encrypt M, use N and the public key, p

Encode Min numbers <N
For each M;, C; = M;P mod N the remainder of MiP when divided by N

For N=3713, p=37,s=97

M Please send money

PlI ea se s en d_mo ne vy _
Encode: 1612 0501 1905 0019 0514 0400 1315 1405 2500
Encrypt: 2080 0057 1857 3706 1584 0888 2067 0591 1277

161237 = 47,044,232,358,938,497,020,498,996,761,564,680,247,331,818,
462,325,046,870,527,453,082,869,350,611,474,961,064,423,374,
436,277,844,788,137,937,637,623,201,792

16123" mod 3713 = 2080, etc.

December 12, 1996 9:44 AM

RSA Decryption

® To decrypt M, use N and the private key, s
For each C;, M, = C;° mod N
Decode numbers to reveal M
For N=3713, p=37,s=97
Please send money
C. 2080 0057 1857 3706 1584 0888 2067 0591 1277
Decrypt: 1612 0501 1905 0019 0514 0400 1315 1405 2500

5797 = 208,862,754,025,291,103,893,549,722,030,506,307,840,035,159,
185,066,358,136,864,739,390,751,752,973,213,714,581,100,145,
330,888,003,488,562,198,990,224,718,358,613,240,589,340,493,287,
521,060,551,858,632,460,253,869,992,608,057

57°" mod 3713 =501

Decode: 1612 0501 1905 0019 0514 0400 1315 1405 2500
PL EA SE _S EN D_ MO NE Y _

®* This exampleis from R. Sedgewick, Algorithms in C, Addison-Wesley, 1990

® For details on multiple-precision arithmetic, see D. R. Hanson, C Interfaces and
Implementations, Addison-Wesley, 1997

December 12, 1996 9:44 AM

PGP

® PGP — Pretty G ood P rivacy — is widely used public-key cryptosystem available for
PCs, UNIX systems, etc.

you% cat | pgp -fea drh

Pretty Good Privacy(tm 2.6.2 - Public-key encryption for the nmasses.
Can | have nore tine on the current

programm ng assi gnnent ?

--frazzled in Princeton

"D

----- BEG N PGP MESSAGE- - - - -

Version: 2.6.2

hEwDr i yzusnX/ hkBAgChqSkx Fk Fwy MFy Cwr ¢l 87] Hz XshOdr DQYTDQRwWc GZI y
A83TTPYz FGAU3y HHNNVWQHAe] JDRIRHPaEXRNEU PpgAAAG cN7B2znggvJeWi R2
dTOVQ musN9Ez32CdYD8ub/ 3b7snmX8q+NCBmL3/ 83Tex SgyudPaqPoi f d7q0N96z
kL4t SAncJHW zyi M RJ+2p41YgcgAgFgaB2NTHaowYQXpGAgNg3nMSTx Og==
=5u0S

----- END PGP MESSAGE- - - - -

you% cat | pgp -fea drh | mail drh@s

drh% i nc
| ncorporating new nmail into inbox...
92+ 09/04 To:drh@s.CS.Prin <<----- BEA N PGP MESSAGE- - - - -

drh% show | pgp -fd

Can | have nore tine on the current
progranm ng assi gnnent ?

--frazzled in Princeton

	Lecture 23.� Viruses and Secret Messages
	Infection Routes
	Detecting Viruses
	Fingerprints
	Fingerprints on the Internet
	Cryptography
	Public-Key Cryptosystems
	RSA Public-Key Cryptosystem
	RSA Decryption
	PGP

