
Copyr 13-1

September 5, 1996 7:12 AM

• e same type

• different types

, called fields

•

• ables and arrays,
re use
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Lecture 13. Structures
An array is a homogeneous collection: all of its elements have th

A structure is a heterogeneous collection: its elements can have

struct date {
int day;
int month;
int year;
char monthname[4]; /* "Jan", "Feb", etc. */

};

Declares a new type, struct date, with four named elements

Structures can be nested

struct student {
char name[30];
float gpa;
struct date birthday;

};

Structure types can be used like int, float, etc. to declare vari
which can optionally be initialized — and they must be initialized befo

struct date today;
struct student cs126[140];

struct date bday = { 2, 11, 1977, "Nov" };

Copyr 13-2

September 5, 1996 7:12 AM

•

 bday, a char

• edence

126
e ith student

rthday

f the ith

• hange field values
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Fields
Structure fields are accessed by variable.field

bday.day the day field in bday, the int 2
bday.name[i] the ith character in the monthname field of

Field selection operator associates to the left and has high prec

struct student cs126[140];

cs126[i].gpa the GPA of the ith student in cs
cs126[i].name[j] the jth character in the name of th
cs126[i].birthday.year

the year of the ith student’s bi
cs126[i].birthday.monthname[0]

the first letter in the monthname o
student’s birthday

Field selection denotes an lvalue; use assignments to initialize/c

today.day = 24;
today.month = 10;
today.year = 1996;
strcpy(today.monthname, "Oct");

swap(&today.day, &bday.day);

Copyr 13-3

September 5, 1996 7:12 AM

• ariable

" };

",

s[i/13];

);

 not integers 0..51
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Arrays of Structures
A structure type provides a way to package related data in one v

struct card {
char *face;
char *suit;

};

char *suits[] = { "Hearts", "Diamonds", "Clubs", "Spades

char *faces[] = { Ace", "2", "3", "4", "5", "6", "7", "8
"9", "10", "Jack", "Queen", "King" };

int main(void) {
int i;
struct card deck[52];

deck[0].face = faces[0]; deck[0].suit = suits[0];
deck[1].face = faces[1]; deck[1].suit = suits[0];
for (i = 2; i < 52; i++) {

int k = rand()%i;
deck[i] = deck[k];
deck[k].face = faces[i%13]; deck[k].suit = suit

}
for (i = 0; i < 52; i++)

printf("%s of %s\n", deck[i].face, deck[i].suit
return 0;

}

Once shuffled, cards are represented by struct card values,

Copyr 13-4

September 5, 1996 7:12 AM

•

date

y
).day,

ield

•

it);

 card element’
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Pointers to Structures
A structure pointer holds the address of a structure variable

struct date today, bday, *pdate;

pdate = &today; assigns the address of today to p
(*pdate).day = 2; sets the day field of today to 2
(*pdate).year++; increments the year field of toda
printf("%s %d, %d\n", (*pdate).monthname, (*pdate

(*pdate).year); prints the date given by today
bday = *pdate; assigns today to bday, field-by-f

Structure pointers can ‘walk along’ arrays of structures

struct card *dptr;

dptr = deck;
for (i = 0; i < 52; i++) {

printf("%s of %s\n", (*dptr).face, (*dptr).su
dptr++;

}

dptr = dptr + 1; increment dptr means
dptr +=1; ‘advance dptr to the next struct
dptr++; not ‘add 1 to dptr’

Copyr 13-5

September 5, 1996 7:12 AM

• ld

re

te
y,

• ch precedence

increments y
increments p
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Pointers to Structures, cont’d
(*ptr).field is so common that there’s an abbreviation: ptr->fie

use var.field when var is a structure

use var->field when var is a pointer to a structu
or (*var).field

-> has high precedence, but less than .

pdate->day = 2; sets the day field of *pdate to 2
pdate->year++; increments the year field of *pda
printf("%s %d, %d\n", pdate->monthname, pdate->da

pdate->year); prints the date given by *pdate

for (i = 0; i < 52; i++) {
printf("%s of %s\n", dptr->face, dptr->suit);
dptr++;

}

Pointer madness! Structures can contain other pointers, but wat

struct foo { int x, *y; } *p;

++p->x increments field x in *p
(++p)->x increments p, then acesses field x
*p->y++ returns the int pointed to by field y in *p,
*p++->y returns the int pointed to by field y in *p,

Copyr 13-6

September 5, 1996 7:12 AM

•
• e more readable
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Typedefs
‘struct card’ is a bit wordy and can make code hard to read

A typedef associates an identifier with a type, which makes cod

typedef struct card Card;

Declares Card to be a type name for ‘ struct card’
Card may be used anywhere struct card can be used

Case matters!

Copyr 13-7

September 5, 1996 7:12 AM

isited
•

ds

.
.
.

.
.
.

0

51

"Ace"
"Diamonds"

"2"
"Spades"

"King"

"Hearts"
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Putting it all Together: Card Shuffling Rev
Represent a deck by an array of pointers
to cards; shuffle by rearranging the
pointers, not the cards themselves

typedef struct card Card;

struct card {
char *face;
char *suit;

};

Card cards[52];

void shuffle(Card *deck[52]) {
int i;

deck[0] = &cards[0];
deck[1] = &cards[1];
for (i = 2; i < 52; i++) {

int k = rand()%i;
deck[i] = deck[k];
deck[k] = &cards[i];

}
}

car

deck
0

51

.
.
.

.
.
.

Copyr 13-8

September 5, 1996 7:12 AM

•
" };

8",

it);

• of card structures
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Card Shuffling Revisited, cont’d
Mapping of 0..51 onto faces and suits is confined to initialization

char *suits[] = { "Hearts", "Diamonds", "Clubs", "Spades

char *faces[] = { "Ace", "2", "3", "4", "5", "6", "7", "
"9", "10", "Jack", "Queen", "King" };

void initialize(void) {
int i;

for (i = 0; i < 52; i++) {
cards[i].face = faces[i%13];
cards[i].suit = suits[i/13];

}
}

int main(void) {
int i;
Card *deck[52];

initialize();
shuffle(deck);
for (i = 0; i < 52; i++)

printf("%s of %s\n", deck[i]->face, deck[i]->su
return 0;

}

Can handle many decks (arrays of pointers) with only one array

	Lecture 13.� Structures
	Fields
	Arrays of Structures
	Pointers to Structures
	Typedefs
	Putting it all Together: Card Shuffling Revisited

