September 5, 1996 7:12 AM

Lecture 13. Structures

®* An array is a homogeneous collection: all of its elements have the same type

® A structureis a heterogeneous collection: its elements can have different types

struct date {
i nt day;
i nt nont h;
I nt year;
char nont hnane[4] ; /[* "Jan", "Feb", etc. */

s
Declares a new type, st ruct dat e, with four named elements, called fields
® Structures can be nested

struct student {
char nane[30] ;
fl oat gpa;
struct date birthday;

b

® Structure types can be used likei nt, fl| oat, etc. to declare variables and arrays,
which can optionally be initialized — and they must be initialized before use

struct date today;
struct student cs126[140];

struct date bday = { 2, 11, 1977, "Nov" };

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 13-1

September 5, 1996 7:12 AM

Fields

® Structure fields are accessed by variable. field

bday. day the day field in bday, theint 2
bday. nane[i] the i th character in the nont hnane field of bday, a char

® Field selection operator associates to the /eft and has high precedence
struct student cs126[140];

csl26[i].gpa the GPA of thei th st udent in cs126
cs126[i].nane[]j] the j th character in the nane of the i th st udent
csl126[i].birthday. year

the year of thei th st udent’s bi rt hday
cs126[i].birthday. nont hnanme[0]

the first letter in the nont hnane of the i th

student’s bi rt hday

®* Field selection denotes an [value; use assignments to initialize/change field values

t oday. day = 24;

t oday. nonth = 10;

t oday. year = 1996;
strcpy(today. nont hnane, "Cct");

swap(& oday. day, &bday. day);

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 13-2

September 5, 1996 7:12 AM

Arrays of Structures

® A structure type provides a way to package related data in one variable

struct card {
char *face;
char *suit;
b

char *suits[] ={ "Hearts", "D anonds", "C ubs", "Spades" };

char *faces[] = { Ace", "2", "3", "4", *"5" "@", "7", "8",
"9", "10", "Jack", "Queen", "King" };

I nt main(void) {
int i;
struct card deck[52];
deck[O] . face faces[0]; deck[O].suit
deck[1] . face faces[1l]; deck[1l].suit
for (i =2; i <52; i++) {
int kK = rand()% ;
deck[i1] = deck[K];
deck[k] .face = faces[i%3]; deck[Kk].suit = suits[i/13];

suits[0];
suits[0];

}
for (i =0; i < 52; i++)

printf("% of %\n", deck[i].face, deck[i].suit);
return O;

}
Once shuffled, cards are represented by st ruct card values, not integers 0..51

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 13-3

September 5, 1996 7:12 AM

Pointers to Structures

® A structure pointer holds the address of a structure variable

struct date today, bday, *pdate;

pdat e = &t oday; assigns the address of t oday to pdat e

(*pdate).day = 2; sets the day field of t oday to 2

(*pdat e) . year ++; increments the year field of t oday

printf("% %, %\n", (*pdate).nonthnanme, (*pdate).day,
(*pdate).year); prints the date given by t oday

bday = *pdat e; assigns t oday to bday, field-by-field

® Structure pointers can ‘walk along’ arrays of structures
struct card *dptr;

dptr = deck;
for (i =0; i < 52; i++) {
printf ("% of %\n", (*dptr).face, (*dptr).suit);

dpt r ++;
}
dptr = dptr + 1; increment dptr means
dptr +=1; ‘advance dptr tothe next struct card element’

dptr ++; not‘add 1to dptr’

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 13-4

September 5, 1996 7:12 AM

Pointers to Structures, cont’d

® (*ptr). fieldis so common that there’s an abbreviation: ptr- >field

use var. field when var is a structure
use var- >field when var is a pointer to a structure
or (*var) . field

- > has high precedence, but less than

pdat e- >day = 2; sets the day field of *pdat e to 2

pdat e- >year ++; increments the year field of *pdate

printf ("% %, %\ n", pdate->nonthnane, pdate->day,
pdat e- >year); prints the date given by *pdate

for (i =0; i <52; i++) {
printf("% of %\n", dptr->face, dptr->suit);
dpt r ++;

}

®* Pointer madness! Structures can contain other pointers, but watch precedence

struct foo { int x, *y; } *p;

++p- >X increments field x in *p

(++p) - >X increments p, then acesses field x

*p->y++ returns the i nt pointed to by field y in *p, increments y
*p++- >y returns the i nt pointed to by field y in *p, increments p

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 13-5

September 5, 1996 7:12 AM

Typedefs

® ‘struct card’is a bit wordy and can make code hard to read

* Atypedef associates an identifier with a type, which makes code more readable
t ypedef struct card Card;

Declares Car d to be a type name for * struct card’
Car d may be used anywhere struct card can be used

Case matters!

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 13-6

September 5, 1996 7:12 AM

Putting it all Together: Card Shuffling Revisited

®* Represent a deck by an array of pointers
to cards; shuffle by rearranging the
pointers, not the cards themselves

cards

0

deck
t ypedef struct card Card, 0| o
struct card { « "Hearts”
char *face; *
char *suit; :
b - " Ace"
Card cards[52]; 7 " Di anonds”
void shuffle(Card *deck[52]) { «
i nt | , - n KI ngn
deck[0] = &cards[O0];
deck[1] = &cards[1]; 51| o]
for (i =2; i <52; i++) {
int k = rand()% ; "o
deck[i] = deck[k]; " Spades”
deck[k] = &cards[i];
}
}

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 13-7

September 5, 1996 7:12 AM

Card Shuffling Revisited, cont’d

® Mapping of 0..51 onto faces and suits is confined to initialization
char *suits[] ={ "Hearts", "D anonds", "C ubs", "Spades" };
char *faces[] ={ "Ace", "2", "3", "4", "5", "6", "7, "8",
9", "10", "Jack", " QJeen" , "Ki ng" } ;
void initialize(void) {
int i;

for (i =0; i <52, i++) {
cards[i].face faces[i %3] ;
cards[i].suit suits[i/13];

}

I nt main(void) {
int i,
Card *deck[52];
initialize();
shuf fl e(deck);
for (i =0; I < 52; i++4)
printf("% of %\n", deck[i]->face, deck[i]->suit);
return O;

}
® Can handle many decks (arrays of pointers) with only one array of card structures

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 13-8

	Lecture 13.� Structures
	Fields
	Arrays of Structures
	Pointers to Structures
	Typedefs
	Putting it all Together: Card Shuffling Revisited

