
Copyr 12-1

October 22, 1996 10:39 AM

•

•

•

• f an int variable

•

8 i
-456 sum

average

count[0]
count[1]
count[2]
count[3]

...
34.5

09AC p
0F18 q
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Lecture 12. Pointers
Variables denote locations in memory that can hold
values; arrays denote contiguous locations

int i = 8, sum = -456;
float average = 34.5;
unsigned count[4];

The location of a variable is its lvalue or address; the
contents stored in that location is its rvalue

A pointer is a variable whose rvalue is the lvalue of
another variable — the address of that variable

Pointers are typed: a ‘pointer to an int’ may hold only the lvalue o

If p points to sum, q points to count[2]:

int *p; unsigned *q;

p = ∑
q = &count[2];

p and q cannot point to average

The null pointer — denoted NULL — points to nothing

p = NULL;

09AC16

09A816

09B416

09B016

0F1016
0F1416
0F1816
0F1C16

13A416
13A816

Copyr 12-2

October 22, 1996 10:39 AM

• alues they point to

nd as an rvalue

operand’s rvalue

•

n int

• s

p

5 y

5 x
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Pointer Operations
Two fundamental operations: creating pointers, accessing the v

unary & ‘address of’ returns the address of its lvalue opera

unary * ‘indirection’ returns the lvalue given by its pointer

Suppose x and y are ints, p is a pointer to an int

p = &x; p is assigned the address of x

y = *p; y is the value pointed to by p

y = *(&x); same as y = x

Declaration syntax for pointer types mimics the use of pointer
variables in expressions

int x, y;

int *p; *p is an int, so p must be a pointer to a

Unary * and & have higher precedence than most other operator

y = *p + 1; y = (*p) + 1;

y = *p++; y = *(p++);

Copyr 12-3

October 22, 1996 10:39 AM

• pointer values can

 or x

 or py

 or py

• ence’

x, int *y) {

2;

", a, b);
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Indirection
Pointer indirection (e.g., *p) yields an lvalue — a variable — and
be manipulated like other values

int x, y, *px, *py;

px = &x; px is the address of x no effect on x

*px = 0; sets x to 0 no effect on px

py = px; py also points to x no effect on px

*py += 1; increments x to 1 no effect on px

y = (*px)++; sets y to 1, x to 2 no effect on px

Passing pointer arguments simulates passing arguments ‘by refer

void swap(int x, int y) {
int t;

t = x;
x = y;
y = t;

}

int a = 1, b = 2;
swap(a, b);
printf("%d %d\n", a, b);

1 2

void swap(int *
int t;

t = *x;
*x = *y;
*y = t;

}

int a = 1, b =
swap(&a, &b);
printf("%d %d\n

2 1

Copyr 12-4

October 22, 1996 10:39 AM

•

ent of a

 definition

•
• ray

•

0; i++)
, a[i]);

cceptable
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Pointers and Arrays
Pointers can ‘walk along’ arrays by pointing to each element in turn

int a[10], i, *p, x;

p = &a[0]; p is assigned the address of the 1st elem
x = *p; x is assigned a[0]
x = *(p + 1); x is assigned a[1]
p = p + 1; p is assigned the address of a[1], by
p++; p points to a[2]

Pointer arithmetic: If p points to a[i], p + k points to a[i+k]

An array name is a constant pointer to the first element of the ar

p = a; p is assigned the address of a[0]
a++; illegal: can’t change a constant
p++; legal: p is a variable

The idiom *p++ walks along the array pointed to by p

p = a;
for (i = 0; i < 10; i++) for (i = 0; i < 1

printf("%d\n", *p++); printf("%d\n"

Both loops print the same output, both are efficient, both are a

Copyr 12-5

October 22, 1996 10:39 AM

• ype

e first element

t *x, int size) {

ze-- > 0)
f("%d\n", *x++);

• is thus a char *

• n return pointers

, then returns dst
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Pointers and Array Parameters
An array parameter type is identical to a pointer to the element t

Array parameters are not constants, they are variables

Passing an array as an actual argument passes a pointer to th

In effect, arrays — and only arrays — are passed by-reference

void print(int x[], int size) { void print(in
int i;

for (i = 0; i < size; i++) while (si
printf("%d\n", x[i]); print

} }

A string is an array of characters; the name of a character array

String functions can be written using arrays or pointers, but ofte

char *strcpy(char *dst, char *src) copies src to dst

char *strcpy(char dst[], char src[]) {
int i;

for (i = 0; src[i] != ’\0’; i++)
dst[i] = src[i];

dst[i] = ’\0’;
return dst;

}

Copyr 12-6

October 22, 1996 10:39 AM

•

!= ’\0’)

•

*src++) != ’\0’)

• fficiency
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Pointers and Array Parameters, cont’d
Pointer version

char *strcpy(char *dst, char *src) {
char *d = dst, *s = src;

while (*d = *s) { while ((*d = *s)
d++;
s++;

}
return dst;

}

Idiomatic version

char *strcpy(char *dst, char *src) {
char *d = dst;

while (*dst++ = *src++) while ((*dst++ =
;

return d;
}

Pointer versions might be faster, but strive for clarity, not microe

Copyr 12-7

October 22, 1996 10:39 AM

•

racters,’
n

•
;

r in the ith string

• cters

56789ABCDEF";

H e a r t s \0

D i a m o d \0sn

C l u \0sb

S p a d e \0s
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Arrays of Pointers
Arrays of pointers help build tabular structures

char *suits[] = {
"Hearts", "Diamonds", "Clubs", "Spades"

};

char *faces[] = {
"Ace", "2", "3", "4", "5", "6", "7", "8",
"9", "10", "Jack", "Queen", "King"

};

Declare suits and faces each to be an ‘array of pointers to cha
not ‘a pointer to an array of characters’, and initialize them as show

Indirection (*) has lower precedence than []

char *suits[]; is the same as char *(suits[])

Declaration mimics use: *suits[i] refers to the 0th characte

printsuit(int card) {
printf("%c", *suits[card%13]);

}

A string constant is shorthand for the name of an array of chara

print("0123456789ABCDEF"[n%b]); char digits[] = "01234
print(digits[n%b]);

suits

Copyr 12-8

October 22, 1996 10:39 AM

•

• d to pointers

•

• rection

• thing’
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Common Errors
Only addresses can be assigned to pointers

int *p, i;
p = i; p = &i;

Only addresses of variables of the correct types can be assigne

int *p; float *p;
float x;
p = &x;

Only pointers can be used with indirection

p = *i; i = *p; ?

Pointers must be initialized to valid addresses before using indi

p = &i;
*p = 5;
printf("%d\n", *p);

The null pointer must not be dereferenced, because it points to ‘no

p = NULL; p = &i;
*p = 6;

Copyr 12-9

October 22, 1996 10:39 AM

•

• tialized? Does the
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Common Errors, cont’d
Pointers must point to variables that exist! See page 4-8

int *SumPtr(int a, int b) {
int sum = a + b;

return ∑
}

p = SumPtr(2, 5); sum does not exist!
printf("%d\n", *p);

char *itoa(int n) {
char buf[100];

sprintf(buf, "%d", n);
return buf;

}

char *s;
s = itoa(56); buf does not exist!
printf("%s\n", s);

sprintf is like printf, but stores the ‘output’ in a string

When faced with bugs involving a pointer, ask: Is this pointer ini
memory it points to exist?

	Lecture 12.� Pointers
	Pointer Operations
	Indirection
	Pointers and Arrays
	Pointers and Array Parameters
	Arrays of Pointers
	Common Errors

