Variables denote /locations in memory that can hold
values; arrays denote contiguous locations

8, sum = -456;
fl oat average
unsi gned count|[4];

I nt |

The location of a variable is its Ivalue or address; the
contents stored in that location is its rvalue

A pointeris avariable whose rvalueis the Ivalue of
another variable — the address of that variable

Pointers are typed: a ‘pointer to an

If p pointsto sum g pointsto count|[2] :

I nt

P
g

p and q cannot pointto aver age

The null pointer — denoted NULL — points to nothing

Lecture 12. Pointers

*p; unsigned *q;

&sum

&count|[2] ;

Y

Copyright 11996 David R. Hanson

NULL,;

Computer Science 126, Fal 1996

09A8,,
09AC,,
09BO,
09B4,,

OF10,,
OF14,,
OF18,,
OF1C,,

13M4
13A8,,

- 456

34.5

I nt ' may hold only the Ivalue of an

09AC

OF18

October 22, 1996 10:39 AM

i
sum

aver age

count [O]
count [1]
count [2]
count [3]

I nt variable

O T

12-1

October 22, 1996 10:39 AM

Pointer Operations

®* Two fundamental operations: creating pointers, accessing the values they point to

unary & ‘address of returns the address of its /value operand as an rvalue

unary * ‘indirection’ returnsthe [value given by its pointer operand’s rvalue

Suppose x and y areints, p isapointertoan int

p = &X; p is assigned the address of X C >
y = *p; y is the value pointedto by p —
y = *(&x); sameas y = X
®* Declaration syntax for pointer types mimics the use of pointer 5
variables in expressions
Int X, V;
I nt *p; *p isan int,so p must beapointertoan int

® Unary * and &have higher precedence than most other operators
y =*p + 1 y = (*p) + 1
y = *ptt; y = *(ptt);

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996

X

P

12-2

October 22, 1996 10:39 AM

Indirection

®* Pointer indirection (e.g., *p) yields an [value — a variable — and pointer values can
be manipulated like other values

int X, y, *px, *py;

pxX = &X; px is the address of x no effect on x

*px = 0; sets xto 0 no effect on px

py = pX; py also pointsto X no effect on px or x
*py += 1; increments x to 1 no effect on px or py
y = (*px)++; setsytol, xto 2 no effect on px or py

® Passing pointer arguments simulates passing arguments ‘by reference’

void swap(int x, int y) { void swap(int *x, int *y) {
int t; int t;
t =X t = *x;
X =Y, X = *y;
y:t; *y:t;
} }
int a=1, b = 2 int a=1, b = 2
swap(a, b); swap(&a, &b);
printf("% %\n", a, b); printf("% %\n", a, b);
12 2 1

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 12-3

October 22, 1996 10:39 AM

Pointers and Arrays

® Pointers can ‘walk along’ arrays by pointing to each element in turn

int a[10], i, *p, X;

p = &a[0]; p is assigned the address of the 1st elementof a
X = *p; X is assigned af 0]

X =*(p + 1); X is assigned a[1]

p =p + 1; p is assigned the address of a[1], by définition
p++; p pointsto af 2]

Pointer arithmetic: If p pointstoa[i],p + k pointsto ai +K]

An array name is a constant pointer to the first element of the array

p = a; p is assigned the address of a[0]
at+; illegal. can’t change a constant
p++; legal: p is a variable

The idiom * p++ walks along the array pointed to by p

p = a,
for (i =0; i < 10; i++) for (i =0; i < 10; i++)
printf("%\n", *p++); printf("%\n", a[i]);

Both loops print the same output, both are efficient, both are acceptable

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 12-4

October 22, 1996 10:39 AM

Pointers and Array Parameters
® An array parameter type is identical to a pointer to the element type
Array parameters are not constants, they are variables

Passing an array as an actual argument passes a pointer to the first element

In effect, arrays — and only arrays — are passed by-reference

void print(int x[], int size) { void print(int *x, int size) {
int i;
for (i =0; 1 < size; i++) while (size-- > 0)
printf("%\n", x[i]); printf("%\n", *x++);
} }

® A stringis an array of characters; the name of a character array is thus achar *

® String functions can be written using arrays or pointers, but often return pointers

char *strcpy(char *dst, char *src) copies src todst, then returns dst
char *strcpy(char dst[], char src[]) {

int i;

for (i = 0; src[i] '="\0"; |i++)
dst[i] = src[i];

dst[i] ="'\0";

return dst;

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 12-5

October 22, 1996 10:39 AM

Pointers and Array Parameters, cont’d

® Pointer version

char *strcpy(char *dst, char *src) {
char *d = dst, *s = src;

while (*d = *s) { while ((*d = *s) I="\0")
d++;
S++;

}

return dst;

}
® |diomatic version

char *strcpy(char *dst, char *src) {
char *d = dst;

while (*dst++ = *src++) while ((*dst++ = *src++) 1= "'\0")

return d;

}
®* Pointer versions might be faster, but strive for clarity, not microefficiency

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 12-6

October 22, 1996 10:39 AM

Arrays of Pointers

®* Arrays of pointers help build tabular structures
ch);r *SF:i ls[] = { o u o sui tS/H\e\a\r t]shol
"Hearts", "Dianmpnds", "d ubs", "Spades" —— ——Dli [a[mon[d]s[\9]
H :\4CH lulbls|io]

char *faces[] = {
"Ace", "2", "3", "4", "5", "e", "7", "8", \ﬂS\p\a\d\e\s\\q
9", "10", "Jack", "Queen", "King"

3
Declare sui t s and f aces each to be an ‘array of pointers to characters,’
not ‘a pointer to an array of characters’, and initialize them as shown

® |ndirection (*) has lower precedence than []
char *suits[]; is the same as char *(suits[]);
Declaration mimics use: *sui t s[i] refers to the Oth character in the i th string
printsuit(int card) {
printf("%", *suits[card%3]);
}
® A string constant is shorthand for the name of an array of characters
print ("0123456789ABCDEF" [n%]) ; char digits[] = "0123456789ABCDEF";

print(digits[n%]);

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996

October 22, 1996 10:39 AM

Common Errors

Only addresses can be assigned to pointers

int *p, i;
p =1 p = &;
®* Only addresses of variables of the correct types can be assigned to pointers
I nt *p; float *p;
fl oat x;
p = &;
®* Only pointers can be used with indirection
p = *i; I = *p; ?
® Pointers must be initialized to valid addresses before using indirection
p = & ;
*p - 5’

printf("%\n", *p);

The null pointer must not be dereferenced, because it points to ‘nothing’

E:NgLL; p = & ;
p =6

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 12-8

October 22, 1996 10:39 AM

Common Errors, cont'd

®* Pointers must point to variables that exist! See page 4-8

int *SunPtr(int a, int b) {
Int sum= a + b;

return &sum
}

p = SunPtr(2, 5); sumdoes not exist!
printf("%\n", *p);

char *itoa(int n) {
char buf[100];

sprintf(buf, "%", n);
return buf;

}
char *s;
s = itoa(56); buf does not exist!

printf("%\n", s);
sprintf islike printf, but stores the ‘output’ in a string

®* When faced with bugs involving a pointer, ask: Is this pointer initialized? Does the
memory it points to exist?

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 12-9

	Lecture 12.� Pointers
	Pointer Operations
	Indirection
	Pointers and Arrays
	Pointers and Array Parameters
	Arrays of Pointers
	Common Errors

