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Lecture 20. Operating Systems
An operating system provides a virtual machine: 
A high-level abstraction of an ugly low-level 
machine

An OS provides resources and services

Memory management: Each user appears to 
have all the memory

Concurrency: Many users appear to compute 
simultaneously

Protection: User A can’t crash B’s program or 
access B’s files

File system: Files appear as streams of bytes, 
files have names, directories, random access

Interaction: X window system, window 
manager, mouse

Network access: The World Wide Web, remote file systems and pr

Programs communicate with the OS via system calls, e.g. TOY o

440216 prints the contents of R4

Each OS has its own (usually large) system call vocabulary
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Multiprogramming
A process is an executing instance of a program

State includes registers, PC, memory management informatio

The OS, a.k.a. kernel, multiplexes the processor between the 
processes, switching between processes at each interrupt

When a periodic clock interrupt occurs (≈ every 1/60 second), do

Stop
Store the registers, PC, etc. in the current process’s state
Load the registers, PC, etc. from the new process’s state
Continue (‘dismiss the interrupt’)
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Reentrant Programs
A reentrant program does not modify its own code; it changes o

One copy can be shared among many processes; each process 

Three processes running emacs

Reentrant programs use less memory

What about the addresses in each process?
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Virtual Memory
Problem 1

Several programs need to use the same memory

Direct solution: Divide up the memory

Problem 2

If the OS can load program anywhere in memory, what is its s

Direct solutions: Have OS adjust relocatable addresses upo
Use only position-independent code (impo

Problem 3

One program needs more memory than the machine has, or m

Direct solution: ‘Overlay’ unused functions with other functions

‘Better’ solution to all these problems

Each program assumes access to the entire memory — its vir

Hardware helps OS associate a small part of physical address
process, keep some of the virtual address space on disk
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Paging
Paging is the predominant method for implementing virtual mem

Maximum effective address determines the virtual address spac

Divide physical memory and virtual memory into fixed-size ‘pages’

Use a power of 2
Leading address bits give the page number
Trailing address bits give the offset in that page

Example: 16-bit addresses, 8-bit page #s, 256-byte pages

Build hardware to map all addresses through a page table

Indexed by virtual page #

Maps virtual page # → physical page #

Indicates whether page is in memory or on disk

Indicates whether in memory page is ‘dirty’ or clean

Keep virtual memory for each program on disk
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Paging, cont’d

Each page read in from disk has to replace another page: Use pa
strategies, such as Least Recently Used

256 bytes
10016
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Size of Virtual Memory
16 bits is not enough

24 bits is not enough

32 bits is not enough!

Is 64 bits enough?

18,446,744,073,709,551,616 > 1019 addresses

64-bit address space needs more sophisticated paging strategy 

Page table would be too big: 213 = 8Kbyte pages needs 251 pa

Associative page tables, multilevel page tables

Some big numbers

1020 Number of grains of sand on a beach

1027 Number of oxygen atoms in a thimble

2256> 1077 Number of electrons in the universe
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File Systems
Disks are messy: Rotating cylinders with movable heads

Rotational latency: Wait for the ‘track’ to appear under 
the head

Seek time: Wait for the head to move in/out to the 
cylinder

At best, a disk is an array of fixed-size blocks

A file system provides high-level features on low-level disks

Directories

Named files

Read/write arbitrary number of bytes

Random access

Automatic growth
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UNIX File System
Disk, array of fixed size blocks, is divided into 3 regions

Root block: File system parameters M, N, list of free 
data blocks

‘Inode’ blocks: Hold ‘information’ nodes, one per file or 
directory

Data blocks: Hold the data, file names in directories

Inode blocks each hold k inodes numbered 0 to k−1, so a 
file system can hold k ×M files/directories

An inode holds everything about a file, except its name

Type: directory or file

Size in bytes

Block numbers of its data blocks or indirect blocks

Number of directories pointing to the file

Times of creation, last modification

A directory is just list of (file name, inode number) pairs
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File Layout
Small file: Inode points to 10 data blocks

For 1Kbyte data blocks, handles files ≤ 
10 Kbyte

Medium-size file: Inode points to 10 
‘indirect’ blocks that point to data blocks

With 4-byte block #s, handles files ≤ 
10×256×1024 = 2,621,440 = 2.5 Mbyte

Large files: Entries in last indirect block 
point to other indirect blocks

Handles files ≤ (9 + 256)×256×1024 = 
69,468,160 = 66.25 Mbyte

Huge files: Inode points to 10 indirect 
blocks that each point to 256 indirect 
blocks

Handles files ≤ 10×256×256×1024 = 
671,088,640 = 640 Mbyte

Adjust block size/inode size to span larger 
disks
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Typical Medium-Size File
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