
Copyr 20-1

December 6, 1996 2:49 PM

•

•

inters

• pcode 4

ing System

ple users
cesses

 system
w system
…

 users
‘process’
f disk blocks
, interrupts

…

 machine
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Lecture 20. Operating Systems
An operating system provides a virtual machine:
A high-level abstraction of an ugly low-level
machine

An OS provides resources and services

Memory management: Each user appears to
have all the memory

Concurrency: Many users appear to compute
simultaneously

Protection: User A can’t crash B’s program or
access B’s files

File system: Files appear as streams of bytes,
files have names, directories, random access

Interaction: X window system, window
manager, mouse

Network access: The World Wide Web, remote file systems and pr

Programs communicate with the OS via system calls, e.g. TOY o

440216 prints the contents of R4

Each OS has its own (usually large) system call vocabulary

Operat

multi
pro
file

windo

no
one

flat array o
I/O bus

Bare

Copyr 20-2

December 6, 1996 2:49 PM

•
n

•

• a context switch

Code

Data
State

te

te

te
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Multiprogramming
A process is an executing instance of a program

State includes registers, PC, memory management informatio

The OS, a.k.a. kernel, multiplexes the processor between the
processes, switching between processes at each interrupt

When a periodic clock interrupt occurs (≈ every 1/60 second), do

Stop
Store the registers, PC, etc. in the current process’s state
Load the registers, PC, etc. from the new process’s state
Continue (‘dismiss the interrupt’)

emacs
State

lcc
State

a.out
Sta

a.out
Sta

a.out
Sta

lcc
State

lcc
State

emacs
State

emacs
State

Copyr 20-3

December 6, 1996 2:49 PM

• nly its data

• has it own data

•

te

te

te
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Reentrant Programs
A reentrant program does not modify its own code; it changes o

One copy can be shared among many processes; each process

Three processes running emacs

Reentrant programs use less memory

What about the addresses in each process?

emacs
State State Sta

Sta

StaState

State
emacs

State

emacs
State

Copyr 20-4

December 6, 1996 2:49 PM

•

•
tarting address?

n loading
ssible in TOY)

•
ore than is left

•
tual address space

 space with each
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Virtual Memory
Problem 1

Several programs need to use the same memory

Direct solution: Divide up the memory

Problem 2

If the OS can load program anywhere in memory, what is its s

Direct solutions: Have OS adjust relocatable addresses upo
Use only position-independent code (impo

Problem 3

One program needs more memory than the machine has, or m

Direct solution: ‘Overlay’ unused functions with other functions

‘Better’ solution to all these problems

Each program assumes access to the entire memory — its vir

Hardware helps OS associate a small part of physical address
process, keep some of the virtual address space on disk

Copyr 20-5

December 6, 1996 2:49 PM

• ory

• e size

•

•

•

7 0 8

Page # Offset

ty? Resident?

Physical
Page #

00

F16

. . .
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Paging
Paging is the predominant method for implementing virtual mem

Maximum effective address determines the virtual address spac

Divide physical memory and virtual memory into fixed-size ‘pages’

Use a power of 2
Leading address bits give the page number
Trailing address bits give the offset in that page

Example: 16-bit addresses, 8-bit page #s, 256-byte pages

Build hardware to map all addresses through a page table

Indexed by virtual page #

Maps virtual page # → physical page #

Indicates whether page is in memory or on disk

Indicates whether in memory page is ‘dirty’ or clean

Keep virtual memory for each program on disk

15

Dir

F

Copyr 20-6

December 6, 1996 2:49 PM

• ge replacement

0100

0000

1B00

1A00

C200

0A00

EA00

3D00

F100
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Paging, cont’d

Each page read in from disk has to replace another page: Use pa
strategies, such as Least Recently Used

256 bytes
10016

00016

20016

30016

40016

50016

60016

70016

80016

1B

F1

. . .

00
3D

01
EA
C2

90016

1A

Copyr 20-7

December 6, 1996 2:49 PM

•
•
•
•

• and hardware

ge-table entries

•

ight 1996 David R. Hanson Computer Science 126, Fall 1996

Size of Virtual Memory
16 bits is not enough

24 bits is not enough

32 bits is not enough!

Is 64 bits enough?

18,446,744,073,709,551,616 > 1019 addresses

64-bit address space needs more sophisticated paging strategy

Page table would be too big: 213 = 8Kbyte pages needs 251 pa

Associative page tables, multilevel page tables

Some big numbers

1020 Number of grains of sand on a beach

1027 Number of oxygen atoms in a thimble

2256> 1077 Number of electrons in the universe

Copyr 20-8

December 6, 1996 2:49 PM

•

•

ack

ad
ight 1996 David R. Hanson Computer Science 126, Fall 1996

File Systems
Disks are messy: Rotating cylinders with movable heads

Rotational latency: Wait for the ‘track’ to appear under
the head

Seek time: Wait for the head to move in/out to the
cylinder

At best, a disk is an array of fixed-size blocks

A file system provides high-level features on low-level disks

Directories

Named files

Read/write arbitrary number of bytes

Random access

Automatic growth

tr

he

Copyr 20-9

December 6, 1996 2:49 PM

•

•

•

•

Inode
Blocks

. . .
. . . Data

Blocks

Super
Block
ight 1996 David R. Hanson Computer Science 126, Fall 1996

UNIX File System
Disk, array of fixed size blocks, is divided into 3 regions

Root block: File system parameters M, N, list of free
data blocks

‘Inode’ blocks: Hold ‘information’ nodes, one per file or
directory

Data blocks: Hold the data, file names in directories

Inode blocks each hold k inodes numbered 0 to k−1, so a
file system can hold k ×M files/directories

An inode holds everything about a file, except its name

Type: directory or file

Size in bytes

Block numbers of its data blocks or indirect blocks

Number of directories pointing to the file

Times of creation, last modification

A directory is just list of (file name, inode number) pairs

0

1

M

N-1

Copyr 20-10

December 6, 1996 2:49 PM

•

•

•

•

•

10

889 bytes

451

66

500

543

801

963
ight 1996 David R. Hanson Computer Science 126, Fall 1996

File Layout
Small file: Inode points to 10 data blocks

For 1Kbyte data blocks, handles files ≤
10 Kbyte

Medium-size file: Inode points to 10
‘indirect’ blocks that point to data blocks

With 4-byte block #s, handles files ≤
10×256×1024 = 2,621,440 = 2.5 Mbyte

Large files: Entries in last indirect block
point to other indirect blocks

Handles files ≤ (9 + 256)×256×1024 =
69,468,160 = 66.25 Mbyte

Huge files: Inode points to 10 indirect
blocks that each point to 256 indirect
blocks

Handles files ≤ 10×256×256×1024 =
671,088,640 = 640 Mbyte

Adjust block size/inode size to span larger
disks

801
7033size

451
500
10
66
963

Copyr 20-11

December 6, 1996 2:49 PM
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Typical Medium-Size File

10
103624

233
1099

10

233

1099

. . .

. . .

	Lecture 20.� Operating Systems
	Multiprogramming
	Reentrant Programs
	Virtual Memory
	Paging
	Size of Virtual Memory
	File Systems
	UNIX File System
	File Layout
	Typical Medium-Size File

