September 19, 1996 10:09 AM

Lecture 3. More About C

®* Programming languages have their lingo

®* Programming /language

Types are ‘categories’ of values I nt,fl oat,char
Constants are values of basic types 0,123.6,"Hell o"
Variables name locations that hold values I, sum

Expressions compute values/change variables sum = sum + |
Statements control a program’s flow of control while,for,if-else
Functions encapsulate statements mai n

Modules collections of related variables & functions

a.k.a. ‘compilation units’

® Programming environment

Text editor (enmacs, vi , sam

Compiler (I cc, cc, gcc)

Linker/loader (I d); used rarely, because | cc runs it
Debugger (gdb)

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 31

September 19, 1996 10:09 AM

Types
®* A typedetermines
a set of values, and

what gperations can be performed on those values

® Scalartypes

char a ‘character’; typically a ‘byte’ — 8 bits

I nt a signed integer; typically values from —-2147483648 to 2147483647
unsi gned an unsigned integer; typically values from 0 to 4294967295

f 1 oat single-precision floating point

doubl e double-precision floating point

® Pointer types: much more later...

®* Aggregatetypes: values that have elements or fields, e.g., arrays, structures

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 32

September 19, 1996 10:09 AM

Constants

® Constant values of the scalar types

char

I nt

unsi gned

fl oat

doubl e

Copyright 11996 David R. Hanson

a
"\ 035’
"\ x29’
1\t1
1\n1
1\\1
1\11
1\b1
1\01
156

0234
0Ox9c

156U
0234U
Ox9cU

15. 6F

1. 56elF

15.6

1. 56E1L

character constant (use single quotes)
character code 35 octal, or base 8
character code 29 hexadecimal, or base 16
tab " \ 011’ , do ‘nman asci i’ for details)
newline (" \ 012’)

backslash

single quote

backspace (' \ 010")

null character: i.e., the character with code 0

decimal (base 10) constant
octal (base 8)
hexadecimal (base 16)

decimal
octal
hexadecimal

‘plain’ floating point constants are doubl es

Computer Science 126, Fal 1996 33

September 19, 1996 10:09 AM

Variables

® A variable is the name of a location in memory that can hold values

int i, sum 3 i
fl oat average; -456 | sum
unsi gned count;
I = 8;
sum = - 456; .
count = 101U '
average = 34.5; 101 | count
®* A variable has a type; it can hold only values of 34.5]| aver age
that type

® Assignments change the values of variables

sum = sum + i; changes the value of sumto -448

® Variables must be jnitialized before they are used

#i ncl ude <stdi o. h>

I nt main(void) {
I nt X;

printf("x = %\n", X); output is undefined!
return O;

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 34

September 19, 1996 10:09 AM

Expressions
® Expressions use the values of variables and constants to compute new values

®* Binary arithmetic operators take two operands produce one result

+ - addition, subtraction
* multiplication, division
% remainder (a.k.a. modulus)

®* Type of result depends on type of operands

int i; unsigned u; float f;

unsi gned fl oat
? unsi gned fl oat

? ? fl oat

I + 1 specifiesi nt addition and yields an i nt result

I nt and unsi gned division truncate: 7/2 is 3, but 7.0/2 is 3.5

® Unary operators take one operand and produce one result

- + negation, ‘affirmation’ (just returns its operand’s value)

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 35

September 19, 1996 10:09 AM

Precedence and Associativity

Operator precedence and associativity dictate the order of expression evaluation

Precedence dictates which subexpressions get evaluated first

highest unary - +
binary * /| %
lowest binary + -

-2*a + Dbis evaluated as if writtenas (((-2)*a) + b)

Associativity dictates the evaluation order for expressions with several operators
of the same precedence

all arithmetic operators have [eft-to-right associativity

a + b + cisevaluated as if writtenas ((a + b) + c)

Use parentheses to force a specific order of evaluation

-2*(a + b) computes -2
a-+b
the product of these two values

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 36

Assignments
®* Assignment expressions store values in variables
variable = expression
the type of expression must be

the same as the type of variable
convertible to the type of variable

int i; unsigned u; float f;

I nt

I nt
unsi gned unsi gned unsi gned

fl oat fl oat fl oat

®* Augmented assignments combine a binary operator with assignment
variable += expression
variable - = expression

sum += | Is the same as sum = sum + |

Copyright 11996 David R. Hanson Computer Science 126, Fall 1996

September 19, 1996 10:09 AM

3-7

September 19, 1996 10:09 AM

Increment/Decrement
* Prefix and postfix operators ++ - - increment and decrement operand by 1
++n adds 1ton
--nN subtracts 1 from n
® Prefix operator increments operand before returning the new value

S;
++n;

X X O

IS6,nis 6

® Postfix operator increments operand after returning the old value
n
X
Xis5nis6

® Operands of ++ and - - must be variables

++1
2 + 3++

are illegal

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 3-8

® sum c (in sun®. c) rewritten using common idioms involving += and ++

/*

ldiomatic C

Conmpute the sum of the integers
from1l ton, for a given n.

*/

#i ncl ude <stdi o. h>

I nt main(void) {

int i, n, sum= 0;

printf("Enter n:\n");
scanf ("%", &n);

for (i =1; i <=n; i++)

sum += i;
printf("Sumfroml1l to %d = %d\n", n, sun);
return O;

}

® scanf is aform of assignment; it changes n

Copyright 11996 David R. Hanson

Computer Science 126, Fal 1996

September 19, 1996 10:09 AM

39

®* Expression statements

expressiongpt ;

® Selection statements

September 19, 1996 10:09 AM

Statements

sum += i;
printf("Sumfroml1l to % = %\n", n, sum;

I f (conditional) statement
I f (conditional) statement el se statement

I f (x > max) max = X;
if (bit == 0) printf(" "); else printf("*");

switch (expression) { case constant: statement... def aul t . statement }

® |teration statements (loops)

whi | e (conditional) statement

while (i <= n) { sum+=i; i++ }

for (expressiong,:; conditionalyn:; expressiong,) Statement

do statement while (

Copyright 11996 David R. Hanson

for (i = 1; i <=n; i++) sum+= i;
for (;;) printf("Help! I'm looping\n");

expression) ;

do { sum +=i; ++i; } while (i <= n);

Computer Science 126, Fal 1996 3-10

September 19, 1996 10:09 AM

Statements, cont’d
® Compound statements
{ declarationyp,... statement... }

for (j =0; j <n; j =j +1){
int bit = (rand()>>14) %;

if (bit == 0)
printf(" ");
el se
printf("*");
}
® QOthers
return expressiong,t ; return;
return O;
return -2*(a + b);
br eak :
conti nue ;

® Keywords (if else while do for switch case ...) cannot be used as variables

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 31

< <=

> >=

September 19, 1996 10:09 AM

Conditional Expressions

A conditional expression is any expression that evaluates to zero or nonzero
There is no ‘Boolean’ type; nonzero is true, zero is false

Relational operators compare two arithmetic values (or pointers) and yield O or 1

less than, less than or equal to
equal to, not equal to
greater than, greater than or equal to

Logical connectives

conditional, && conditional, 1if both conditionals are nonzero; O otherwise

conditional; || conditional, 1if either conditional is nonzero; O otherwise

conditionals are evaluated left-to-right only as far as is necessary

&& stops when the outcome is known to be zero

highest

lowest

Copyright 11996 David R. Hanson

stops when the outcome is known to be nonzero

Associativity: left to right; precedence: below the arithmetic operators

arithmetic operators

< <= >= > a+b<mx || mx == 0 & a ==
== I = IS interpreted as if written
&& ((a+b) <max) || (max == 0 & & (a == b))

Computer Science 126, Fal 1996 312

	Lecture 3.� More About C
	Types
	Constants
	Variables
	Expressions
	Precedence and Associativity
	Assignments
	Increment/Decrement
	Idiomatic C
	Statements
	Conditional Expressions

