
Copyr 3-1

September 19, 1996 10:09 AM

•
•

float, char

3.6, "Hello"

m

= sum + i

e, for, if-else

•

ight 1996 David R. Hanson Computer Science 126, Fall 1996

Lecture 3. More About C
Programming languages have their lingo

Programming language

Types are ‘categories’ of values int,

Constants are values of basic types 0, 12

Variables name locations that hold values i, su

Expressions compute values/change variables sum

Statements control a program’s flow of control whil

Functions encapsulate statements main

Modules collections of related variables & functions
a.k.a. ‘compilation units’

Programming environment

Text editor (emacs, vi, sam)

Compiler (lcc, cc, gcc)

Linker/loader (ld); used rarely, because lcc runs it

Debugger (gdb)

Copyr 3-2

September 19, 1996 10:09 AM

•

•

648 to 2147483647

967295

•
• s, structures
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Types
A type determines

a set of values, and

what operations can be performed on those values

Scalar types

char a ‘character’; typically a ‘byte’ — 8 bits

int a signed integer; typically values from −2147483

unsigned an unsigned integer; typically values from 0 to 4294

float single-precision floating point

double double-precision floating point

Pointer types: much more later…

Aggregate types: values that have elements or fields, e.g., array

Copyr 3-3

September 19, 1996 10:09 AM

•
)

e 16
)

e 0

ubles
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Constants
Constant values of the scalar types

char ’a’ character constant (use single quotes
’\035’ character code 35 octal, or base 8
’\x29’ character code 29 hexadecimal, or bas
’\t’ tab (’\011’, do ‘man ascii’ for details
’\n’ newline (’\012’)
’\\’ backslash
’\’’ single quote
’\b’ backspace (’\010’)
’\0’ null character; i.e., the character with cod

int 156 decimal (base 10) constant
0234 octal (base 8)
0x9c hexadecimal (base 16)

unsigned 156U decimal
0234U octal
0x9cU hexadecimal

float 15.6F
1.56e1F

double 15.6 ‘plain’ floating point constants are do
1.56E1L

Copyr 3-4

September 19, 1996 10:09 AM

• es

•

•

•

m

erage

unt
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Variables
A variable is the name of a location in memory that can hold valu

int i, sum;
float average;
unsigned count;

i = 8;
sum = -456;
count = 101U;
average = 34.5;

A variable has a type; it can hold only values of
that type

Assignments change the values of variables

sum = sum + i; changes the value of sum to -448

Variables must be initialized before they are used

#include <stdio.h>

int main(void) {
int x;

printf("x = %d\n", x); output is undefined!
return 0;

}

8 i
-456 su

34.5 av

101 co

Copyr 3-5

September 19, 1996 10:09 AM

• te new values

• lt

•

•
ue)
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Expressions
Expressions use the values of variables and constants to compu

Binary arithmetic operators take two operands produce one resu

+ - addition, subtraction
* / multiplication, division
% remainder (a.k.a. modulus)

Type of result depends on type of operands

int i; unsigned u; float f;

i + i specifies int addition and yields an int result

int and unsigned division truncate: 7/2 is 3, but 7.0/2 is 3.5

Unary operators take one operand and produce one result

- + negation, ‘affirmation’ (just returns its operand’s val

+ i u f

i int unsigned float

u ? unsigned float

f ? ? float

Copyr 3-6

September 19, 1996 10:09 AM

• ssion evaluation

•

• several operators

•

ight 1996 David R. Hanson Computer Science 126, Fall 1996

Precedence and Associativity
Operator precedence and associativity dictate the order of expre

Precedence dictates which subexpressions get evaluated first

highest unary - +

binary * / %

lowest binary + -

-2*a + b is evaluated as if written as (((-2)*a) + b)

Associativity dictates the evaluation order for expressions with
of the same precedence

all arithmetic operators have left-to-right associativity

a + b + c is evaluated as if written as ((a + b) + c)

Use parentheses to force a specific order of evaluation

-2*(a + b) computes -2
a + b
the product of these two values

Copyr 3-7

September 19, 1996 10:09 AM

•

• ment
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Assignments
Assignment expressions store values in variables

variable = expression

the type of expression must be

the same as the type of variable
convertible to the type of variable

int i; unsigned u; float f;

Augmented assignments combine a binary operator with assign

variable += expression
variable -= expression
…

sum += i is the same as sum = sum + i

= i u f

i int int int

u unsigned unsigned unsigned

f float float float

Copyr 3-8

September 19, 1996 10:09 AM

• rand by 1

• lue

• e

•

ight 1996 David R. Hanson Computer Science 126, Fall 1996

Increment/Decrement
Prefix and postfix operators ++ -- increment and decrement ope

++n adds 1 to n

--n subtracts 1 from n

Prefix operator increments operand before returning the new va

n = 5;
x = ++n;

x is 6, n is 6

Postfix operator increments operand after returning the old valu

n = 5;
x = n++;

x is 5, n is 6

Operands of ++ and -- must be variables

++1
2 + 3++

are illegal

Copyr 3-9

September 19, 1996 10:09 AM

• and ++

•

ight 1996 David R. Hanson Computer Science 126, Fall 1996

Idiomatic C
sum.c (in sum2.c) rewritten using common idioms involving +=

/*
Compute the sum of the integers
from 1 to n, for a given n.
*/
#include <stdio.h>

int main(void) {
int i, n, sum = 0;

printf("Enter n:\n");
scanf("%d", &n);
for (i = 1; i <= n; i++)

sum += i;
printf("Sum from 1 to %d = %d\n", n, sum);
return 0;

}

scanf is a form of assignment; it changes n

Copyr 3-10

September 19, 1996 10:09 AM

•

n", n, sum);

•

e printf("*");

ult : statement }

•

; }

ement

= i;
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Statements
Expression statements

expressionopt ; sum += i;
printf("Sum from 1 to %d = %d\

Selection statements

if (conditional) statement
if (conditional) statement else statement

if (x > max) max = x;
if (bit == 0) printf(" "); els

switch (expression) { case constant : statement… defa

Iteration statements (loops)

while (conditional) statement

while (i <= n) { sum += i; i++

for (expressionopt ; conditionalopt ; expressionopt) stat

for (i = 1; i <= n; i++) sum +
for (;;) printf("Help! I’m looping\n");

do statement while (expression) ;

do { sum += i; ++i; } while (i <= n);

Copyr 3-11

September 19, 1996 10:09 AM

•

{

•

• used as variables
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Statements, cont’d
Compound statements

{ declarationopt… statement… }

for (j = 0; j < n; j = j + 1)
int bit = (rand()>>14)%2;
if (bit == 0)

printf(" ");
else

printf("*");
}

Others

return expressionopt ; return;
return 0;
return -2*(a + b);

break ;
continue ;

Keywords (if else while do for switch case …) cannot be

Copyr 3-12

September 19, 1996 10:09 AM

• o or nonzero

•
•) and yield 0 or 1

•
zero; 0 otherwise

zero; 0 otherwise

ary :

• rators

 a == b

 0 && (a == b))
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Conditional Expressions
A conditional expression is any expression that evaluates to zer

There is no ‘Boolean’ type; nonzero is true, zero is false

Relational operators compare two arithmetic values (or pointers

< <= less than, less than or equal to
== != equal to, not equal to
> >= greater than, greater than or equal to

Logical connectives

conditional1 && conditional2 1 if both conditionals are non

conditional1 || conditional2 1 if either conditional is non

conditionals are evaluated left-to-right only as far as is necess

&& stops when the outcome is known to be zero
|| stops when the outcome is known to be nonzero

Associativity: left to right; precedence: below the arithmetic ope

highest arithmetic operators
< <= >= > a + b < max || max == 0 &&
== != is interpreted as if written
&& ((a + b) < max) || (max ==

lowest ||

	Lecture 3.� More About C
	Types
	Constants
	Variables
	Expressions
	Precedence and Associativity
	Assignments
	Increment/Decrement
	Idiomatic C
	Statements
	Conditional Expressions

