
Copyr 8-1

October 8, 1996 10:32 AM

•
• ble ways

•

m call

 if less
 indirect
 and link
immediate

0

0

0

ight 1996 David R. Hanson Computer Science 126, Fall 1996

Lecture 8. TOY Instructions
A program is a sequence of instructions

An instruction is a 16-bit word, interpreted in one of many possi

3 instruction ‘formats,’ 16 different instructions

Format 1 Format 2 Format 3
0 halt C xor 9 load 4 syste
1 add D and A store 5 jump
2 subtract E shift right 6 jump
3 multiply F shift left 7 jump

8 jump
B load

15 12 11 8 7 4 3

Format 1 op dst reg1 reg2

15 12 11 8 7 4 3

Format 2 op dst reg con4

15 12 11 8 7 4 3

Format 3 op dst con8

Copyr 8-2

October 8, 1996 10:32 AM

•

ister R2
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Format 1 Instructions

Format 1 instructions are register-to-register instructions

Interpret dst, reg1, and reg2 as register numbers

Take operands from reg1 and reg2, and put the result in dst

Example: 123416 means R2 ← R3 + R4

Stores the sum of the contents of registers R3 and R4 into reg

211616 R1 ← R1 − R6
3267 R2 ← R6 × R7
C512 R5 ← R1 ^ R2 exclusive OR
D645 R6 ← R4 & R5 logical AND
E056 R0 ← R5 >> R6 shift right
F764 R7 ← R6 << R4 shift left

0000 halt

15 12 11 8 7 4 3 0

op dst reg1 reg2

15 12 11 8 7 4 3 0

1 2 3 4

Copyr 8-3

October 8, 1996 10:32 AM

•
gned constant

• ister dst

 3 to the contents

• address

ifed by adding 5 to

• ore
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Format 2 Instructions

Format 2 instructions are memory operation instructions

Interpret dst and reg as register numbers, con4 as a 4-bit unsi

Compute the effective address reg + con4

Load copies a word from memory at the effective address to reg

912316 means R1 ← M[R2 + 3]

Copy the contents of the memory location specifed by adding
of register R2 to register R1

Store copies a word from register dst to memory at the effective

A76516 means M[R6 + 5] ← R7

Copy the contents of register R7 to the memory location spec
the contents of register R6

When con4 is 0, load/store are sometimes called indirect load/st

15 12 11 8 7 4 3 0

op dst reg con4

Copyr 8-4

October 8, 1996 10:32 AM

•
onstant or address

•

er register:

2

• O

n operand
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Format 3 Instructions

Most of the format 3 instructions are control instructions

Interpret dst as a register number, con8 as an 8-bit unsigned c

Compute a jump address as either con8 or dst

Set PC to that address

Oddballs: system call (4) and load immediate (B)

Load immediate copies con8 to register dst

B23416 means R2 ← 3416 set register R2 to 3416

Use load immediate to copy the contents of a register to anoth

B00016 R0 ← 0 set R0 to 0
1320 R3 ← R2 + R0 set R3 to R2 + R0 = R2 + 0 = R

System call invokes actions that need special permission, like I/

con8 specifies the system call ‘action code’, dst may specify a

440216 writes the contents of R 4 to the standard output

15 12 11 8 7 4 3 0

op dst con8

Copyr 8-5

October 8, 1996 10:32 AM

• st

 is set to 6216

• register or the
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Jump Instructions
Jump instructions change the PC to con8, or to the contents of d

jump
506216 PC ← 6216

The next instruction will be taken from M[6216]

jump if less
6362 PC ← 6216 if the contents of R3 < 0

jump indirect
7500 PC ← R5

The next instruction will be taken from the address in R5

jump and link
3A16 8462 R4 ← PC, PC ← 6216
3B

The contents of the PC (3B16) are saved in R4, then the PC
The next instruction will be taken from M[6216]

Used for function linkage — calls and returns

All instructions of format 3 use a constant as one operand and a
program counter as the other operand.

Copyr 8-6

October 8, 1996 10:32 AM

•

ight 1996 David R. Hanson Computer Science 126, Fall 1996

Example: Bit Twiddling
Set b0 of R4 to b10 ^ b3 from R1, clear b1–b15 in R4

R4 = ((R1>>10) ^ (R1>>3)) & 1;

1010 0111 0111 0010 R1
0000 0000 0010 1001 R1>>10
0001 0100 1110 1110 R1>>3
0001 0100 1100 0111 (R1>>10) ^ (R1>>3)
0000 0000 0000 0001 ((R1>>10) ^ (R1>>3)) & 1

Assuming R 1 is initialized to A77216

00: B000 R0 <- 00
01: 1210 R2 <- R1 + R0 = A772
02: 1310 R3 <- R1 + R0 = A772
03: B50A R5 <- 0A
04: B603 R6 <- 03
05: E225 R2 <- R2 >> R5 = 0029
06: E336 R3 <- R3 >> R6 = 14EE
07: C323 R3 <- R2 ^ R3 = 14C7
08: B401 R4 <- 01
09: D443 R4 <- R4 & R3 = 0001

Copyr 8-7

October 8, 1996 10:32 AM

•

•

 b
+ b)×x

+ b)×x + c

•

ight 1996 David R. Hanson Computer Science 126, Fall 1996

Example: Polynomial Evaluation
Evaluate ax2 + bx + c = 2x2 + 3x + 9 at x = 10 (23910 = EF16)

Store the ‘data’ in locations 30–33 16

30: 000A x
31: 0002 a
32: 0003 b
33: 0009 c

Use Horner’s method: rewrite ax2 + bx + c as (ax + b)x + c

10: B330 R3 <- 30
11: 9430 R4 <- M[R3+00] = M[30] = 000A x
12: 9531 R5 <- M[R3+01] = M[31] = 0002 a
13: 3554 R5 <- R5 * R4 = 0014 a×x
14: 9632 R6 <- M[R3+02] = M[32] = 0003 b
15: 1556 R5 <- R5 + R6 = 0017 a×x +
16: 3554 R5 <- R5 * R4 = 00E6 (a×x
17: 9633 R6 <- M[R3+03] = M[33] = 0009 c
18: 1556 R5 <- R5 + R6 = 00EF (a×x
19: 4502 system call 2: print R5 = 00EF
1A: 0000 HALT

Polynomial evaluation for arbitrary x

many applications, one raison d’etre for early computers

	Lecture 8.� TOY Instructions
	Format 1 Instructions
	Format 2 Instructions
	Format 3 Instructions
	Jump Instructions
	Example: Bit Twiddling
	Example: Polynomial Evaluation

