December 6, 1996 4:17 PM

Lecture 21. Regular Expressions

®* A reqular expression describes a set of strings by giving a ‘pattern’ for them

C Any nonspecial character matches itself A
Any single character X
\c Special character c¢ \.
[...] Any character in ..., including ranges [a- z0- 9]
[*...] Any character notin ..., including ranges [7O- 9]
R Ry Whatever matches R; followed by R, [A-Z] _
R* Zero or more occurrences of R [a-z][a-z] *

® Tokens in most programming languages can be described by regular expressions

[1-9][0-9]* Decimal constants in C
o[0-7]* Octal constants in C
[0-9][0-9]*\.[0-9]~* Floating constants in C
[A-Za-z J[A-Za-z_0-9]* C identifiers
"TA"\n]*" String literals in C
UIAMAN] R (quoted for the shell)

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 21-1

December 6, 1996 4:17 PM

egrep

® Many UNIX tools support searching for patterns described by regular expressions

egrep,grep,fgrep Search for lines matching regular expressions

ed, vi , enacs
sed
awnk

More ...

Text editors
Stream editor

String-processing language

® egrep prints those lines that match the regular expression

% cd /u/csl26/exanpl es
% egrep enal loc *.c

conpi l e. c:
intlist.c:
intlist.c:

| ookup. c:

| ookup?2. c:
sort2.c:
sort3.c:
sublistn. c:
subl i stn2. c:
subl i stn3. c:

Copyright 11996 David R. Hanson

Tree *t = emall oc(sizeof (Tree));

struct intnode *p = emal |l oc(sizeof (struct intnode));
struct intnode *p = emal |l oc(sizeof (struct intnode));

ptr = emal | oc(si ze*sizeof (char *));
struct node *p = enalloc(sizeof (struct node));
ptr = emal | oc(size*sizeof (int));
ptr = emal |l oc(n*sizeof (int));
array emal | oc(size*sizeof (int));
array emal | oc(size*sizeof (int));
array emal | oc(si ze*si zeof (int));

Computer Science 126, Fal 1996

21-2

December 6, 1996 4:17 PM

egrep, cont’'d
® /usr/dict/words contains = 25,143 words

% egrep hh /usr/dict/words
beachhead

hi ghhanded

wi t hhel d

wi t hhol d

How many words have 3 a’s one letter apart?

% egrep .a.a.a /usr/dict/words | w -1
50

% egrep .u.u.u /usr/dict/words
cunul us

® egrep supports extended regular expressions

A Beginning of line

$ End of line

R+ One or more occurrences of R [0-9] +

R? Zero on one occurrence of R [0-9]*\. ?[0-9] +
R{|R, Whatever matches Ry or R, [A-Z]| _+

(R) Grouping

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 21-3

December 6, 1996 4:17 PM

egrep, cont’'d

® egrep as a simple spelling checker: Specify plausible alternatives you know

% egrep
nei t her

"n(ielei)ther"” /usr/dict/words

®* Find big files; du - ka prints file sizes in 1Kbyte blocks

%du -ka /etc | egrep '~[5-9][0-9][0-9]" 500 and up
552 / et c/ fs/ nfs/ nmount

553 /etc/fs/nfs

837 letc/fs

850 [etc/lpl/printers

883 letc/lp

®* Find all lines with signed numbers

% egrep '[-+][0-9]+|.?2[0-9]* *.cC

bsearch. c: return -1;

conpi l e. c: strchr("+1-2*3", t->op)[1] - '0O', dst,
convert.c:Print integers in a given base 2-16 (default 10)
convert. c: sscanf(argv[i+1], "%l", &base);

strcnp. c: return -1;

strcnp. c: return +1;

® egrep has

Copyright 11996 David R. Hanson

its limits: It cannot match all lines that contain a number divisible by 5

Computer Science 126, Fal 1996 21-4

December 6, 1996 4:17 PM

Formal Languages
®* A Jlanguageis a (possibly infinite) set of strings over a finite alphabet

® A regular expression describes a language: The set of all strings it ‘matches’

A regular language is any language that can be described by a regular expression
® Essential aspects of regular expressions can be specified with only

Oorl The alphabet

Ry Ry R, followed by R,

Ri+R, Rjior R, (same as egrep’s|)

(R) Grouping

R* Kleene closure: 0 or more Rs (10)* (0+011+101+110)* (01*01*01*)*

What languages over { 0 1 } are regular? All but one below are regular

Bit strings whose number of 0’s is a multiple of 5
that begin with 0 and end with 1
with more 1's than O’s
with no consecutive 1's
for a binary number that is a multiple of 2
for a binary number that is multiple of 5

® |tis possibleto cast any computation as a language problem

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 21-5

December 6, 1996 4:17 PM

Finite State Automata

®* A finite state automata, an FSA, is another representation for regular languages

® AFSAis asimple machine with N states (0 to N-1)

Start in state O

Read a bit

Move to a new state depending on the bit and the current state
Stop after reading last bit

Acceptif FSA is in one of its final states, Reject otherwise

®* An FSA ‘recognizes’ its input: ‘Decides’ if the input is in the FSA's regular language

10(10)* Transition table Odd number of Os
1 0 1
O 55
0 1 11 2 3 1 1
A HE X -
.@ 3] 3 3
0 1

101010107 00011107?
® There is aone-to-one correspondence between FSAs and regular expressions

® |tis possibleto construct FSAs automatically from regular expressions

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 21-6

December 6, 1996 4:17 PM

‘Bounce’ Filter

®* Flip isolated Os and 1s in a bitstream

1011
1111

Input: 010

001
Output: 00 000 1

® State interpretations

1. At least two consecutive Os
2. Sequence of Os followed by a single 1
3. At least two consecutive 1s
4. Sequence of 1s followed by a single 0

® Do ‘output’ by monitoring the state transitions

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 21-7

December 6, 1996 4:17 PM

Simulating FSAs

Int main(int argc, char *argv[]) {

int i = 0, zero[100], one[100], final[100];

for (i =0; 1 < 100; i++4)
I f (scanf("%%%", &zero[i], &one[i], &inal[i]) !'= 3)

br eak;

for (i =1; i < argc; i++) {
int state = O;
char *input = argv[i];

for (; *input !'="\0"; input++)
If (*input =="0")
state = zero[state];
el se
state = one[state];

If (final[state])
printf("%: accepted\n", argv[i]);
el se
printf("%: rejected; ended in state %\ n",
argv[i], state);

}
return O;
}
% cat fsai nput % lcc fsa.c
310 % a. out 10101010 10 101011 <fsai nput
230 10101010: accepted
311 10: accepted
330 101011: rejected; ended in state 3

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 21-8

December 6, 1996 4:17 PM

FSAs Can’t ‘Count’

® Theorem: No finite state machine can decide whether or not its input has the same
number of Os and 1s

®* Proof
Suppose an N-state machine can determine if its input has equal number of Os 1s
Give it N+1 Os followed by N+1 1s
Some state must be visited a least twice
So, the machine would accept the same string without the intervening 0Os

And that string doesn’t have the same number of Os and 1s. Contradiction [

0000000011111 111

® Need more powerful machines than FSAs

How much more powerful? Language hierarchy

Regular Finite-state automata

Context-free Pushdown automata (can count 2 things)
Context-sensitive Linear-bounded automata

Type O Turing machines

Take COS 487, Theory of Automata and Computation

Copyright 11996 David R. Hanson Computer Science 126, Fal 1996 21-9

	Lecture 21.� Regular Expressions
	egrep
	Formal Languages
	Finite State Automata
	‘Bounce’ Filter
	Simulating FSAs
	FSAs Can’t ‘Count’

