
Copyr 21-1

December 6, 1996 4:17 PM

• for them

A

x

\.

[a-z0-9]

[^0-9]

[A-Z]_

[a-z][a-z]*

• gular expressions
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Lecture 21. Regular Expressions
A regular expression describes a set of strings by giving a ‘pattern’

c Any nonspecial character matches itself

. Any single character

\c Special character c

[…] Any character in …, including ranges

[^…] Any character not in …, including ranges

R1R2 Whatever matches R1 followed by R2

R* Zero or more occurrences of R

Tokens in most programming languages can be described by re

[1-9][0-9]* Decimal constants in C

0[0-7]* Octal constants in C

[0-9][0-9]*\.[0-9]* Floating constants in C

[A-Za-z_][A-Za-z_0-9]* C identifiers

"[^"\n]*" String literals in C
’"[^"\n]*"’ (quoted for the shell)

Copyr 21-2

December 6, 1996 4:17 PM

• gular expressions

ressions

•

intnode));
intnode));

 node));
ight 1996 David R. Hanson Computer Science 126, Fall 1996

egrep
Many UNIX tools support searching for patterns described by re

egrep, grep, fgrep Search for lines matching regular exp

ed, vi, emacs Text editors

sed Stream editor

awk String-processing language

More …

egrep prints those lines that match the regular expression

% cd /u/cs126/examples
% egrep emalloc *.c
compile.c: Tree *t = emalloc(sizeof (Tree));
intlist.c: struct intnode *p = emalloc(sizeof (struct
intlist.c: struct intnode *p = emalloc(sizeof (struct
lookup.c: ptr = emalloc(size*sizeof (char *));
lookup2.c: struct node *p = emalloc(sizeof (struct
sort2.c: ptr = emalloc(size*sizeof (int));
sort3.c: ptr = emalloc(n*sizeof (int));
sublistn.c: array = emalloc(size*sizeof (int));
sublistn2.c: array = emalloc(size*sizeof (int));
sublistn3.c: array = emalloc(size*sizeof (int));

Copyr 21-3

December 6, 1996 4:17 PM

•

•

?[0-9]+
ight 1996 David R. Hanson Computer Science 126, Fall 1996

egrep, cont’d
/usr/dict/words contains ≈ 25,143 words

% egrep hh /usr/dict/words
beachhead
highhanded
withheld
withhold

How many words have 3 a’s one letter apart?

% egrep .a.a.a /usr/dict/words | wc -l
50
% egrep .u.u.u /usr/dict/words
cumulus

egrep supports extended regular expressions

^ Beginning of line

$ End of line

R+ One or more occurrences of R [0-9]+

R? Zero on one occurrence of R [0-9]*\.

R1|R2 Whatever matches R1 or R2 [A-Z]|_+

(R) Grouping

Copyr 21-4

December 6, 1996 4:17 PM

• s you know

•
nd up

•

0’, dst,
0)

• ber divisible by 5
ight 1996 David R. Hanson Computer Science 126, Fall 1996

egrep, cont’d
egrep as a simple spelling checker: Specify plausible alternative

% egrep "n(ie|ei)ther" /usr/dict/words
neither

Find big files; du -ka prints file sizes in 1Kbyte blocks

% du -ka /etc | egrep ’^[5-9][0-9][0-9]’ 500 a
552 /etc/fs/nfs/mount
553 /etc/fs/nfs
837 /etc/fs
850 /etc/lp/printers
883 /etc/lp

Find all lines with signed numbers

% egrep ’[-+][0-9]+\.?[0-9]*’ *.c
bsearch.c: return -1;
compile.c: strchr("+1-2*3", t->op)[1] - ’
convert.c:Print integers in a given base 2-16 (default 1
convert.c: sscanf(argv[i+1], "%d", &base);
…
strcmp.c: return -1;
strcmp.c: return +1;

egrep has its limits: It cannot match all lines that contain a num

Copyr 21-5

December 6, 1996 4:17 PM

• abet

• atches’

• egular expression

• nly

10)* (01*01*01*)*

• gular

•

ight 1996 David R. Hanson Computer Science 126, Fall 1996

Formal Languages
A language is a (possibly infinite) set of strings over a finite alph

A regular expression describes a language: The set of all strings it ‘m

A regular language is any language that can be described by a r

Essential aspects of regular expressions can be specified with o

0 or 1 The alphabet

R1 R2 R1 followed by R2

R1+R2 R1 or R2 (same as egrep’s |)

(R) Grouping

R* Kleene closure: 0 or more Rs (10)* (0+011+101+1

What languages over { 0 1 } are regular? All but one below are re

Bit strings whose number of 0’s is a multiple of 5
that begin with 0 and end with 1
with more 1’s than 0’s
with no consecutive 1’s
for a binary number that is a multiple of 2
for a binary number that is multiple of 5

It is possible to cast any computation as a language problem

Copyr 21-6

December 6, 1996 4:17 PM

• ular languages

•

e

• ular language

s

• r expressions

• ssions

1 1
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Finite State Automata
A finite state automata, an FSA, is another representation for reg

A FSA is a simple machine with N states (0 to N−1)

Start in state 0
Read a bit
Move to a new state depending on the bit and the current stat
Stop after reading last bit
Accept if FSA is in one of its final states, Reject otherwise

An FSA ‘recognizes’ its input: ‘Decides’ if the input is in the FSA’s reg

10(10)* Transition table Odd number of 0

10101010? 0001110?

There is a one-to-one correspondence between FSAs and regula

It is possible to construct FSAs automatically from regular expre

0

2
0

0

3

11

0

01

1

1

10
0
1
2
3

3
2
3
3

1
3
1
3

0

0

1 0

Copyr 21-7

December 6, 1996 4:17 PM

•

•

•

ight 1996 David R. Hanson Computer Science 126, Fall 1996

‘Bounce’ Filter
Flip isolated 0s and 1s in a bitstream

Input: 0 1 0 0 0 1 1 0 1 1
Output: 0 0 0 0 0 1 1 1 1 1

State interpretations

1. At least two consecutive 0s

2. Sequence of 0s followed by a single 1

3. At least two consecutive 1s

4. Sequence of 1s followed by a single 0

Do ‘output’ by monitoring the state transitions

0
0

1

0 1

2
1

3

1 0

1 0

Copyr 21-8

December 6, 1996 4:17 PM

]) != 3)

01011 <fsainput

ed in state 3
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Simulating FSAs
int main(int argc, char *argv[]) {

int i = 0, zero[100], one[100], final[100];
for (i = 0; i < 100; i++)

if (scanf("%d%d%d", &zero[i], &one[i], &final[i
break;

for (i = 1; i < argc; i++) {
int state = 0;
char *input = argv[i];
for (; *input != ’\0’; input++)

if (*input == ’0’)
state = zero[state];

else
state = one[state];

if (final[state])
printf("%s: accepted\n", argv[i]);

else
printf("%s: rejected; ended in state %d\n",

argv[i], state);
}
return 0;

}

% cat fsainput
3 1 0
2 3 0
3 1 1
3 3 0

% lcc fsa.c
% a.out 10101010 10 1
10101010: accepted
10: accepted
101011: rejected; end

Copyr 21-9

December 6, 1996 4:17 PM

• nput has the same

•
al number of 0s 1s

rvening 0s

ontradiction ❚

•

gs)
ight 1996 David R. Hanson Computer Science 126, Fall 1996

FSAs Can’t ‘Count’
Theorem: No finite state machine can decide whether or not its i
number of 0s and 1s

Proof

Suppose an N-state machine can determine if its input has equ

Give it N+1 0s followed by N+1 1s

Some state must be visited a least twice

So, the machine would accept the same string without the inte

And that string doesn’t have the same number of 0s and 1s. C

Need more powerful machines than FSAs

How much more powerful? Language hierarchy

Regular Finite-state automata
Context-free Pushdown automata (can count 2 thin
Context-sensitive Linear-bounded automata
Type 0 Turing machines

Take COS 487, Theory of Automata and Computation

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

	Lecture 21.� Regular Expressions
	egrep
	Formal Languages
	Finite State Automata
	‘Bounce’ Filter
	Simulating FSAs
	FSAs Can’t ‘Count’

