
Copyr 5-1

September 26, 1996 10:01 AM

•

es 0..10

•

•
•

count[0]

count[1]

count[2]

count[3]

count[4]

count[5]

count[6]

count[7]

count[8]

count[9]

count[10]
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Lecture 5. Arrays
An array is a named collection of variables all of the same type

Each variable in the collection is an element

Elements are known by their integer positions or indices

int count[11];

defines an array named count that has 11 elements with indic

Array elements are accessed by subscripting

count[expression]

expression is any expression whose value is an integer
between 0 and 10 inclusive

Subscript expressions are variables, a.k.a. lvalues

No bounds checking — effect of out-of-bound subscripts
is undefined

Array elements occupy successive locations in memory

Array elements are uninitialized; use loops to initialize them

int i, count[11];

for (i = 0; i < 11; i++)
count[i] = 0;

Copyr 5-2

September 26, 1996 10:01 AM

•

•

ores from 0..100

score;

 i++)

&score) != EOF)
0]++;
; i--) {
[i];
 10*i);
)
);
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Printing a Histogram
scores contains 115 exam scores between 0 and 100

% lcc hist.c
% a.out <scores
100 **
 90 ********
 80 ************
 70 ***************************
 60 ******************
 50 **************
 40 ************
 30 *******
 20 ******
 10 *****
 0 ****
%

Use an array to hold the number of
scores in each 10-point range

/*
Print a histogram of sc
in groups of 10.
*/
#include <stdio.h>

int main(void) {
int i, counts[11],

for (i = 0; i < 11;
counts[i] = 0;

while (scanf("%d",
counts[score/1

for (i = 10; i >= 0
int n = counts
printf("%3d ",
while (n-- > 0

printf("*"
printf("\n");

}
return 0;

}

Copyr 5-3

September 26, 1996 10:01 AM

ounts; scanf
ed in stdio.h)

e of the histogram
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Dissecting hist.c
int i, counts[11], score;

for (i = 0; i < 11; i++)
counts[i] = 0;

Declares counts and initializes each of its 11 elements to 0

while (scanf("%d", &score) != EOF)
counts[score/10]++;

Reads the scores and increments the appropriate element of c
returns the value EOF at the end-of-file is reached (EOF is defin

for (i = 10; i >= 0; i--) {
int n = counts[i];
printf("%3d ", 10*i);
while (n-- > 0)

printf("*");
printf("\n");

}

Loops from counts[10] down to counts[0] printing each lin

Copyr 5-4

September 26, 1996 10:01 AM

•

• r order

4]

4]

4]

x[2][4]
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Multidimensional Arrays
Multidimensional arrays have two or more indices

int x[3][5];

defines an 2-dimensional array x that has 3×5 = 15 elements

Array rows occupy successive locations in memory — row-majo

x[1][

x[2][

x[1][3]

x[2][3]

x[1][2]

x[2][2]

x[1][1]

x[2][1]

x[1][0]

x[2][0]

x[0][x[0][3]x[0][2]x[0][1]x[0][0]

x[0][0] x[0][4] x[1][0] x[1][4] x[2][0]

Copyr 5-5

September 26, 1996 10:01 AM

• stogram

•

ot of scores

[10], score;

i++)
 10; j++)
] = 0;
score) != EOF)
][score%10]++;
 i--) {
i);
= 0; j--) {
nts[i][j];
> 0)
"%d", j);
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Printing a Stem-and-Leaf Plot
A stem-and-leaf plot displays the data values themselves in a hi

% lcc stem.c
% a.out <scores
10 00
 9 97765510
 8 977655533100
 7 998777666655555444333211100
 6 988776544333221000
 5 44322111111000
 4 888444444311
 3 7655211
 2 865221
 1 65311
 0 8850
%

Use a 2-dimensional array to hold
the number of times each score
occurs

counts[i][j] is the number of
times the score 10∗i + j occurs

Each row of counts is a row in
the stem plot

/*
Print a stem-and-leaf pl
from 0..100.
*/
#include <stdio.h>

int main(void) {
int i, j, counts[11]

for (i = 0; i < 11;
for (j = 0; j <

counts[i][j
while (scanf("%d", &

counts[score/10
for (i = 10; i >= 0;

printf("%2d ",
for (j = 9; j >

int n = cou
while (n--

printf(
}
printf("\n");

}
return 0;

}

Copyr 5-6

September 26, 1996 10:01 AM

 110 elements to 0

mes score occurs

line character

0 for each
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Dissecting stem.c
int i, j, counts[11][10], score;

for (i = 0; i < 11; i++)
for (j = 0; j < 10; j++)

counts[i][j] = 0;

Declares counts as a 11-by-10 array and initializes each of its

counts[score/10][score%10]++;

Increments the element of counts that holds the number of ti

for (i = 10; i >= 0; i--) {
printf("%2d ", i);
…
printf("\n");

}

Loops down the rows of counts, printing each ‘leaf’ and a new-

for (j = 9; j >= 0; j--) {
int n = counts[i][j];
while (n-- > 0)

printf("%d", j);
}

Loops down the ith column in counts printing j = score%1
occurrence of score

Copyr 5-7

September 26, 1996 10:01 AM

•

•

• call-by-reference

 caller’s element

st(int n) {
-- > 0)
ntf("*");
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Passing Arrays to Functions
Array parameters are declared by omitting the array size

void record(int score, int counts[]) {
counts[score/10]++;

}

Arrays are passed to functions by giving just the array name

int main(void) {
int i, counts[11], score;

for (i = 0; i < 11; i++)
counts[i] = 0;

while (scanf("%d", &score) != EOF)
record(score, counts);

for (i = 10; i >= 0; i--) {
printf("%3d ", 10*i);
printhist(counts[i]);
printf("\n");

}
return 0;

}

Arrays — and only arrays — are passed in a way that simulates

The callee can change elements in the caller’s array argument

An element is passed by value — the callee cannot change the

void printhi
while (n

pri
}

Copyr 5-8

September 26, 1996 10:01 AM

• number of rows

• oid indexing bugs
ight 1996 David R. Hanson Computer Science 126, Fall 1996

Passing Arrays to Functions, cont’d
Declare multidimensional array parameters by omitting only the

void printstem(int counts[][10], int nrows) {
while (--nrows >= 0) {

int j;
printf("%2d ", nrows);
for (j = 9; j >= 0; j--) {

int n = counts[nrows][j];
while (n-- > 0)

printf("%d", j);
}
printf("\n");

}
}

int main(void) {
int i, j, counts[11][10], score;

for (i = 0; i < 11; i++)
for (j = 0; j < 10; j++)

counts[i][j] = 0;
while (scanf("%d", &score) != EOF)

counts[score/10][score%10]++;
printstem(counts, 11);
return 0;

}

Passing the number of rows, or array size, to functions helps av

	Lecture 5.� Arrays
	Printing a Histogram
	Dissecting hist.c
	Multidimensional Arrays
	Printing a Stem-and-Leaf Plot
	Dissecting stem.c
	Passing Arrays to Functions

