
Name: Precept (circle one): 1a 1b 2 3a 3b 4

COS 126 Fall 1996 Jan. 20, 1997
Final Examination

Write your name legibly and indicate your precept number on all pages of this exam.
We’ll separate the pages during grading, so your name must appear on every page.
Also, please sign the pledge:

I pledge on my honor that I have not violated the honor code during this examination.

Correct answers to problems 1–12 are each worth 5 points, no answer is worth 0 points,
and incorrect answers are worth −1 point. Be careful!

1. The 16-bit, two’s-complement representation for −13210 is

(a) 008416
(b) FF7B16

(c) 1775748
(d) 1776048

(e) None of the above

2. The output of the TOY program shown to the right below is

(a) 4102
(b) 4602 0012
(c) 0010 0012
(d) 0012 0012
(e) 4602 4102

10
10: B110
11: 8620
12: 4602
13: 0000
20: 9160
21: 4102
22: 7600

3. If Quicksort uses 5, the leftmost value in the input 5 8 7 6 1 9 3 2 4, as the pivot element,
the result of just one partitioning step is

(a) 5 8 7 6 1 9 3 2 4
(b) 2 3 1 4 7 9 8 5 6
(c) 5 4 2 6 1 9 3 7 8

(d) 1 4 2 3 5 9 6 7 8
(e) 5 4 7 6 1 9 3 2 8

4. The function below computes Fibonaci numbers. How many recursive calls are made to
compute f(5), not counting the initial call to f(5)?

(a) 14
(b) 8

(c) 7
(d) 15

(e) 18
int f(int n) {

if (n < 2) return 1;
return f(n-1) + f(n-2);

}

5. What does the recursive function shown to the right below return?

(a) The number 0 bits in n.
(b) The number 1 bits in n.
(c) The sum of the contiguous 3-bit

sequences in n.
(d) The sum of the elements of b.
(e) The sum of the elements of b[i]

for each 3-bit sequence i in n.

int b[]={0, 1, 1, 2, 1, 2, 2, 3};
int f(unsigned n) {

int k = b[n&7];
if (n != 0) k += f(n>>3);
return k;

}

1

Name: Precept (circle one): 1a 1b 2 3a 3b 4

6. duplicate returns 1 if there is a duplicate value in x[0..N-1]. The worst-case running time
of duplicate is about

(a) N2

(b) N3

(c) N
(d) N lgN
(e) lgN

int duplicate(int x[], int N) {
int i;
quicksort(x, 0, N-1);
for (i = 0; i < N-2; i++)

if (x[i] == x[i+1]) return 1;
return 0;

}

7. Suppose a file system restricts data block numbers to 16 bits. The smallest data block size
on a 1 GB (230 bytes) disk is

(a) 512 bytes (b) 65526 bytes (c) 8 KB (d) 16 KB (e) 32 KB

8. struct word { char *str; int count; } *ptr points to a dynamically allocated array of
word structures. The code below prints n counts and words and deallocates the strings and
structures.

for (i = 0; i < n; i++) {
printf("%d\t%s\n", ptr[i].count, ptr[i].str);
free(ptr[i].str);
free(ptr[i]);

}

This code is incorrect because

(a) It does not deallocate the array.
(b) ptr[i] does not point to a dynamically allocated structure.
(c) ptr[i].str is not a dyamically allocated string.
(d) ptr[i].str is deallocated twice.
(e) All of the above.

9. The code below prints the words in the input. getword(char *word, int size) reads the
next word as a null-terminated string in word[0..size-1] and returns its length or EOF.

char *word = emalloc(sizeof (char *));
while (getword(word, 200) != EOF) printf("%s\n", word);

This code is incorrect because

(a) The space pointed to by word is too small.
(b) word is uninitialized.
(c) The memory pointed to by word is for a character pointer, not for an array of characters.
(d) getword can’t change the memory pointed to by word.
(e) word isn’t an array of characters.

2

Name: Precept (circle one): 1a 1b 2 3a 3b 4

10. reverse(x, y, len) copies len elements from y into x in reverse order:

void reverse(int *x, int *y, int len) {
int i;
if (len > 0 && x >= y && x < y + len) {

int *temp = emalloc(len*sizeof (int));
for (i = 0; i < len; i++) temp[i] = y[i];
reverse(x, temp, len);
free(temp);

} else
for (i = 0; i < len; i++) x[i] = y[len-i-1];

}

Given a[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }, which call illustrates the flaw in reverse.

(a) reverse(a, a, 10)
(b) reverse(a + 1, a, 8)
(c) reverse(a + 4, a, 6)
(d) reverse(a + 8, a + 2, 2)
(e) None of the above; the function is correct.

11. The object code shown to the right below is a TOY program that computes the sum of the
integers from M to N, which are the values stored in the locations indicated. The instructions
in this program that must be relocated by the linker are those at locations

(a) 00, 0D, 0E
(b) 01, 06, 0A
(c) 01, 06, 0A, 0D, 0E
(d) 01, 02, 03
(e) 00, 01, 06, 0A, 0D, 0E

00: B001 =MAIN
01: B10D
02: 9210
03: 9111
04: 2112
05: B300
06: 610B
07: 1332
08: 1220
09: 2110
0A: 5006
0B: 4302
0C: 0000
0D: 00 =M
0E: 0A =N

12. The regular expression that describes the language accepted by the FSA below is

(a) (0+1)((10)*0 + (01)*1)
(b) 0((10)*(0+11)) + 1((01)*(1+00))
(c) 0(10)*0 + 1(01)*1
(d) (0+1)((10*)+(01)*)(0+1)
(e) None of the above.

0

1

3

2

0 1

0 0

11

3

Name: Precept (circle one): 1a 1b 2 3a 3b 4

13. (10 pts) listtoarray(list, last) builds an n+ 1-element array that holds the n integers
in the linked list list in elements 0 to n − 1 and the value of last in element n, and it
returns a pointer to the array. For example, if list holds 1, 2, 3, listtoarray(list, -1)
returns a pointer to the first element of the array { 1, 2, 3, -1 }, and if list is empty,
listtoarray(list, -1) returns a pointer to the one-element array { -1 }. Fill in the body
of listtoarray below.

struct item { int info; struct item *link; };
int *listtoarray(struct item *list, int last) {

14. (10 pts) treefree(tree) deallocates all the nodes in tree, which is a binary search tree.
Fill in the body of treefree below.

struct node { int info; struct node *left, *right; };
void treefree(struct node *tree) {

4

Name: Precept (circle one): 1a 1b 2 3a 3b 4

15. (10 pts) dup(n, s) returns a dynamically allocated string that holds the concatenation
of n copies of the nonnull string s. If n≤0, dup returns the empty string. For exam-
ple, the call dup(3,"help ") returns "help help help ", where denotes a space, and
dup(0, "help ") returns "". Fill in the body of dup below. You may call other C library
functions.

char *dup(int n, char *s) {

16. (10 pts) itohex(n) fills a dynamically allocated, null-terminated string with the hexadecimal
representation of all 32 bits of n and returns that string. For example, itohex(10) returns
0000000A. Fill in the body of itohex below. You may call other functions.
5 pt. Bonus: Make your function work even when ints are not 32 bits long.

char *itohex(int n) {

5

