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In this paper we investigate the dynamic behavior of road traffic flows in an area represented by
an origin-destinationNO-D) network. Probably the most widely used model for estimating the
distribution of O-D flows is the gravity moddl). de D. Ortuzar and L. G. WillumseWodelling
Transport(Wiley, New York, 1990] which originated from an analogy with Newton’s gravitational
law. The conventional gravity model, however, is static. The investigation in this paper is based
on a dynamic version of the gravity model proposed by Dendrinos and Sonis by modifying
the conventional gravity mod€D. S. Dendrinos and M. Soni§haos and Social-Spatial Dynamics
(Springer-Verlag, Berlin, 1990. The dynamic model describes the variations of O-D flows
over discrete-time periods, such as each day, each week, and so on. It is shown that when
the dimension of the system is one or two, the O-D flow pattern either approaches an equilibrium
or oscillates. When the dimension is higher, the behavior found in the model includes equilibria,
oscillations, periodic doubling, and chaos. Chaotic attractors are characterizédosiive
Liapunov exponents and fractal dimensions.1@98 American Institute of Physics.
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Road traffic in an area can be characterized by aggre-
gate flows from their origins to their destinations. The
distribution of origin —destination (O—D) flows in an
area is an important source of information for traffic
management and control in the short term, as well as
for transport planning and highway design in the
longer term. Probably the most widely used model
for predicting traffic flows between each O-D pair is
the gravity model, [J. de D. Ortuzar and L. G. Willum-
sen, Modelling Transport (Wiley, New York, 1990)]
which originated from an analogy with Newton’s gravi-
tational law. The conventional gravity model, however,
is static, although traffic flows are bound to vary with
time. A static model considers only an equilibrium
state of a traffic system, making the implicit assumption
that the equilibrium is stable. Equilibrium and stability
are most important and desirable in a traffic system.
However, whether or not an equilibrium will prevail in
the system depends on road and traffic conditions. Varia-
tions in these will tend to push the system away from
the equilibrium. The system can then be expected to
move toward another attractor which may not even be an
equilibrium. The model that will be investigated in this
paper is the dynamic version of the gravity model pro-
posed by Dendrinos and SonigD. S. Dendrinos and M.
Sonis, Chaos and Social-Spatial DynamicgSpringer-
Verlag, Berlin, 1990)]. It models the variations of O-D
flows in an area over discrete-time periods, such as each
day, each week, and so on. By investigating the model
under various conditions represented by different pa-
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rameter values, we are able to understand different types
of behavior, particularly disequilibrium behavior, in the
traffic system.

I. INTRODUCTION

Road traffic flows can be modeled at different levels of
spatial scope: an area level, a road network level, and a road
link level. In transport modelling, the area under consider-
ation is divided into sub-areas callednes A journey from
one zone to another is calledrgp. A particular zone may be
an origin, or a destination, or both if trips can both start and
terminate there. A zone is normally represented by a single
point called itscentroid and trips from and to the zone are
assumed concentrated at the centroid. Thus, the area can be
represented by an origin—destinatig@—D) network with
the nodes being the centroids and the arcs being the connec-
tions between O-D pairs. Each O-D pair is connected by
one or moreroutes that is, chains of road links. An O-D
network is therefore an aggregate representation of the actual
road network in the area.

Four transport models are used to estimate successively
the distribution of traffic flows on a road network in an area.
(1) Trip generation in which the numbers of trips generated
from and attracted to each zone are determined given the
socio-economic data in the are@) Trip distribution, in
which the number of trips between each O-D pair is esti-
mated.(3) Modal split which splits trip makers into the al-
ternative transport modes available, typically between pri-
vate cars and public buse$4) Trip assignment which
assigns trips between each O-D pair to alternative routes
connecting these O-D pairs, so that the traffic flows on each
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TABLE 1. A general form of a trip matrix. origin-constrained model may be suitable. That the total flow
— attracted to each zone is known does not necessarily mean
Destination Total .
Origin 1 2 i J 3, that a doubly constrained model should be used.
Associated with each O-D pair there is a travel cost. It
L Xau o X oot Xyt X 0 may be measured in terms of distance, time or monetary
2 X1 X292 Xaj X23 0, R . . .
units, or a combination of these. It is normally referred to as
i X X2t X Xy 0 thegeneralized cost of traveln the gravity model, the num-
ber of trips between each O-D pair is determined based on
| Xiz o Xi2 Xij X3 O the cost through deterrence functiowhich relates the num-
Total 3, dy d, d; d; X=1

ber of trips to the cost. For example, in one of the earliest
doubly constrained gravity models, it was assumed, follow-
ing Newton’s gravitational law, that the number of trips be-
road link can be obtained. These route/link flows may themyeen each O-D pair is proportional & andd;, and is
be used for traffic congestion prediction, traffic signal setinyversely proportional to the square of the distance between
ting, road designing, and so on. The gravity model was dethe O-D pair. In this model, the deterrence function is a
Veloped for trlp diStribUtion. It m0de|S tl’affiC ﬂOWS at the power function W|th the power o:f_z More genera| types of
O-D network level without concerning itself with which geterrence function have been considérattluding an ex-
specific routes the O-D flows take—there may be more thagonential function, a power function, and a combined expo-
one route connecting an O-D pair. _ nential and power function. The exponential and power de-
The O-D flow pattern in an area is represented iy terrence functions are both decreasing functions of costs. The
matrix. This is essentially a two-dimensional array of cells combined function is not a monotonic function of cost; the
where each row corresponds to an origin and each column tqumper of trips first increases and then decreases with the
a destination, as shown in Table I. In this tablg, is the  cost. It has been observed that, in the case of motorized trips,
number of trips from zoné to zonej, o is the total number e combined function can fit the data better than the other
of trips originating in zone, d; is the total number of trips o functions. This is because comparatively few people use

attracted to zong, X is the total number of trips from all 5.5 for very short trips while the power and exponential
origins or to all destinationd, is the number of origins, and  ,nctions cannot reproduce this feature.

J is the number of destinations. The relationship between the 114 history of the family of gravity models can be traced

entries of the matrix and the marginal totals can be expressegl, -1 1o over one century ago. However, it was not until the

as 1950s that the model was applied to the trip distribution. The
ijij =0;, i=12,...], (13 model provides a rigorous tool for modeling and analyzing
. transport network problems in a fairly simple mathematical
Tixij=dj, j=12,...). (b form. Apart from the trip distribution, the gravity model has
For the convenience of the analysis and description, we shafllso been used in another closely related transport problem,
consider relative quantities of trips. In other words, we as-namely, thetrip matrix estimatiorproblem? This is an alter-
sume native way of estimating a trip matrix, but from traffic count
data on road links. The trip matrix estimation problem may

Zijxi=1. (19 pe considered as a dual of trip assignment problems—the
Clearly, we must then havi&;o;=1 andX;d;=1 as well. input of one problem is the output of the other.
The marginal total; andd; are normally estimated by a The conventional gravity model is static with travel costs

trip generation model and can be used as inputs to a trimdependent of traffic flows. This may be based on two as-
distribution model, which in turn gives the entries of a trip sumptions. First, the underlying traffic system would stick to
matrix. If a trip distribution model satisfies bofia and an equilibrium state defined by the model. In general, how-
(1b), in other words, if the total number of trips originating ever, an equilibrium may not be the only possible type of
and terminating in each zone given by the model equals theteady state of a dynamical system; there may also be other
predetermined totals, then the model is said todoebly types of steady states, such as oscillations or chaos. In addi-
constrained If a model satisfieg1a or (1b) but not both tion, any equilibrium need not be unique, nor always stable.
then it is origin constrainedor destination constrained Secondly, the effects of congestion are negligible in the sys-
These models are also callsohgly constrainednodels. If a  tem. In practice, the costs will normally increase with flows
model satisfies neither set of constraints, it is calleduan because of congestion effects.

constrained model, although the normalization condition In recent years, there have been many dynamic analyses
(1) must still be fulfilled. Which type of constraint should of trip assignment models and trip matrix estimation models,
be involved in a model depends mainly on the availability ofbut hardly any dynamic considerations of the gravity models
information about the; andd;. Other factors may also be for a trip distribution. Dendrinos and Sonis introduced itera-
considered. For example, for non-work trips such as trips fotive dynamics to the conventional gravity modeh the dy-
shopping, the total number of trips from an oridifior ex-  namic gravity model, the O-D flows at each time period are
ample, a residential areemnay be regarded as fixed while the generated from the travel costs at the previous time period
total number of trips to a destinatiaffior example, a city and the travel costs are assumed to be a function of O-D
centej should be considered to be variable. In this case, aflows.
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Dendrinos and Sonis suggested that the dynamic gravitwhere cﬂ is the uncongested travel cost from originto
model had a potential to show interesting behavior such adestinationj, g;; is the corresponding capacity of the roads
chaos, but they did not give any detailed analysis. An uncon¢the ability that roads can accommodate traffic flpvesid «
strained version of this model was investigated by Jarrett andnd y are positive constants. In this function, the minimum
Zhang? It was found that a gravity model with the exponen- function value is the uncongested costxgt=0. Whenx;;
tial or the power deterrence function can have only point>0, the cost increases with the flow.
attractors and period-2 attractors. With the combined deter- The deterrence function is a generalized function of
rence function, the model was found to be chaotic for someravel costs with one or more parameters for calibration. The
values of parameters in the model. On the other hand, thiéree types of deterrence functions mentioned in the Intro-
existence, uniqueness and the stability of an equilibrium irduction can be written as
the dynamic gravity model have been analyzed by Zhang and
Jarrett! where multiple equilibria were identified. f(cij) =cij exp(— 5 ¢ij),

In this paper, the dynamic gravity model, including the wherex andg are parameters. When=0 andB>0, f is an
unconstrained, singly constrained and doubly constrainedxponential deterrence function; wher<0 andB=0 itis a
versions, is investigated. We shall concentrate on modelgower deterrence function; and when-0 andB>0 it is a
with the combined deterrence function and on identifyingcombined deterrence function. The parameters are estimated
different types of attractors in the model. Different initial so that the model reproduces, as close as possible, the ob-
conditions and parameter values will be considered; the chaerved trip length(cosd distribution, or the distribution of
otic behavior found in the model will be characterized bythe number(or equivalently the frequengyof trips over
Liapunov exponents and fractal dimensions. The model isravel costs.
described in the next section, which is followed by the nu-  The normalizing factony;;(x) in (2) is chosen so that
merical analysis of the model in the subsequent section. Lione or more of the marginal constrairits)—(1c) are satis-
apunov exponents and fractal dimensions for chaotic attragied. We can have three types of models with different con-
tors are calculated in the fourth section. The paper isstraints, as follows.
summarized in the last section. For briefness the term “grav- .
ity model” means the dynamic gravity model unless other-(l) Unconstrained model:

wise stated. f(cij(xij))
FilX)=o—————, X;=0, xii=1.
i) Zf(Ci (X)) . %" !
(2) Singly-constrained model. There are two types: the
II. THE MODEL origin-constrained model,
. L . . f(Cij(Xij))
Let x be a trip matrix withx;; being the number of trips FiX)=0iczr——, X;j=0, E Xij=0j;
o o : = f(ci (%)) ]
from origin i to destinationj. Denote the set of all possible S )
values ofx by S. This will be defined by non-negativity and the destination-constrained model,
constraints on theg; and appropriate marginal constraints. o Fe(xip) B
Then the dynamic gravity model is defined by a mappging, Fij0=d, Sif (Cki(X) Xij=0, Z Xij=d;.
F: S—S,  Fi(x)=;(0f(cij(x;))), (3) The doubly constrained model. In a doubly constrained
_ . model, the normalizing factor is replaced by two sets of
i=12,...), j=12,...), ) constantsg;(x) andb;(x). The model is

where;;(X) is an appropriate normalizing factor determined

from the marginal constraints;; is the travel cost, which is Fij 00 =ai(0b; 00T (i (xij)),

normally assumed to be an increasing functiom;pf f(-) is Xi;=0,
the deterrence function. The mé®) defines a discrete-time
dynamical system: ifn is the discrete time, and(n) the
y Y (n) Z xij=d;, ; Xij =0, (33

O-D flow pattern at timen, thenx(n+1)=F(x(n)) is the
O-D flow pattern at timen+ 1. For nonwork trips, such as

trips for shopping, we may consider the variations of O_thereai(x) andb;(x) satisfy the equations

flows over time periods like each day or each week because (o}
the number of trips between each O—D pair is the result of  &i(X)= SNICRERIL (3b)
. . . . . j ](X) (CI](XIJ))
daily or weekly decisions of trip makers. For work trips, on
the other hand, a longer time slice may be more appropriate d;
since the choices of originfor example, residence loca- ()= a0 f(cij (%)) (30)
tions) and/or destinationgfor example, the work plageare ) )
normally based on longer-term decisions. Clearly the state space of the unconstrained model has di-

In order to model the congestion effect between eachnension IXJ—1. It can be seen that in the origin-
O-D pair, Dendrinos and Sonis suggested the following cosgonstrained modef;; depends only on the elements of the

function2 ith row of trip matrixx. Therefore the model consists bf
o independent equations. Each equation, after further normal-
Cij(Xij) = cj[ 1+ a(Xi; /g;;) 7], ization by dividing each element of the trip matrix by, is
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equivalent to the unconstrained model with a dimenslon be found by the use of bifurcation diagrams. These are pro-
—1. Similarly, the destination-constrained model consists ofluced by increasing the bifurcation parameter step by step
J independent equations and each component of the modehd, at each step, iterating the model until an attractor is
can be normalized to get a model equivalent to the unconreached. When producing these diagrams, the initial condi-
strained model with a dimensidn- 1. Therefore, the uncon- tions were taken in two ways. One way is simply to use the
strained and singly constrained models can be written in theame initial conditions for all steps of the parameter and the
more general form, using single subscripts for simplification,other to use the final states of the system at the previous step

of the parameter, given the initial condition at the first step.
f(ci(xi)) . : . .
Fi(x)= S et There may be a longer transient in the first method than in
Zif (Ce(xw)) the second. By starting from different initial conditions, dif-
ferent attractors may be detected if there is more than one
x=0, > x=1, i=12,...K, (4 attractor for the same value of the parameter. Figures 2—3 are
' two sets of bifurcation diagrams fg8 but with different
where values ofu. Each set contains two diagrams with two ways
iy — 0 aar] i — of starting. Figures @)—4(b) are local enlargements of Fig-
ci)=cilitatal/a)’], 1=1.2,... K, ures 3a)-3(b), respectively, showing the bifurcation se-
f(ci)=cfexp —pBc;), i=12,...K. quences in more detail. For example, there jEeeodic win-
dow when B is approximately between 3.15 and 3.18 in

WhenK=1XJ the equation represents an unconstrained dyi=i ure 4a)
namic gravity model; while wheK equalsl or J the equa- g )

. . . Two important features can be seen in these bifurcation
tion represents one component of a singly constrained model . : . T

: : T diagrams. First, there are some discontinuous points in Figs.
with o; or d; being set to 1 for normalization. A doubly

constrained model, however, is different. The model has g(a), 3(@), and 4a). The reason for this is the existence of

state space of dimensioh£1)X (J—1) and it contains two multiple attractors in the state space. As the bifurcation pa-

. . rameter varies, the basins of attractors vary too. Iterations
sets of parametex (x) andb(x) which are interdependent. from the same initial conditions may converge to different
This will be discussed further in the numerical investiga- y 9

tions attractors for different values of the parameter. When the
In the numerical calculations in the next section, differ-'mt'al condition is the final state of the system at the previous

ent initial conditions and parameter values will be considere&te'[tJ of 'the paral'rlrgelter:[, asmn FIg;(?f)\Z 3(b), an?t 4b1’ thei
while all other conditions, including the uncongested trave>YS'€M IS More likely 1o approach the same attractor at suc-

cost and capacity of each O—D pair, and the marginal totalgeSSive steps of the parameter because the increment of the

in the doubly constrained model will be assumed to be giVen[_)arameter is very small. The multiplicity of attractors is also
onfirmed by the fact that in Figs. 2—3, different starting

The analysis of the unconstrained or singly constrained®" ) . . .
model will be based on the generalized fofd) and the points lead to different bifurcation sequences and different

doubly constrained model will be investigated separately. sets of attractors.
4 d P y The second feature in the bifurcation diagrams is that

there seems to be a typical bifurcation sequence. As the

IIl. NUMERICAL INVESTIGATIONS value of parameter increases, the system starts with an equi-
librium, followed by aperiod doublingsequence. With the
exception of Fig. t), the period doubling sequence leads to

Given an initial condition and the values of parameterschaos. In Fig. t), there is the period doubling up to 16 and
the gravity mode(4) can be iterated until a steady state or anthen undoubling to period 2 without going through chaos.
attractor is reached. It was found that when the number ofWhat is more, chaotic behavior is also followed by periodic
dimensions is 1 or 2, the system either converges a fixedndoubling, to a periodic orbit. This behavior may be ex-
point or approaches a period-2 orbit. When the dimension iplained by the form of the deterrence function. As was men-
higher (3 or morg, however, more complicated behavior oc- tioned in the Introduction, a previous study by Jarrett and
curs in the model. Period doubling and apparently irregulaZhang indicated that with the exponential and power deter-
behavior or chaos were found to be quite typical. The phaseence functions, the gravity model will have only point at-
portrait projection of a chaotic attractor found in a model oftractors and period-2 attractors. Both types of deterrence
two origins and two destinations is shown in Figa)l where  function are monotonic decreasing functions. The combined
it can be seen that the attractor is geometrically a very comdeterrence function is not monotonic and has a maximum at
plicated object. When the initial condition is changedc=u/B. For a fixed value ofu, asB—0, the function tends
slightly, the orbit will soon diverge. Sensitive dependence orto an increasing function. This is clearly not a suitable deter-
initial conditions is shown in Figure(h), where the solid rence function. A$3 increases gradually, the position of the
line is the series starting ax=[0.0300 0.3521 0.5313 maximum moves to the left, and the function becomes a
0.0864, while the dashed line is the series starting atdecreasing function in the limit. The typical bifurcation se-
x=[0.0301 0.3520 0.5313 0.08p6The starting time im guence of the model is equilibriumperiodic doubling and
=1000. It can be seen that the orbits distinguish themselveshaos— period-2 orbit as8 increases. This seems to indi-
after less than 20 iterations. cate that it is the non-monotonic nature of the deterrence

More features of the dynamic behavior in the model carfunction that causes complicated behavior in the gravity

A. Unconstrained or singly constrained model
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Phase portrait of unconstrained gravity model
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Time series of unconstrained gravity model
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iteration

FIG. 1. Chaotic attractor of the unconstrained or singly constrained gravity modeluwitt8.0, 8=3.25,2=1.0, y=1.0. (a) Phase portrait projectiorib)
sensitive dependence on initial conditions.

model. It also appears that the model can have only simpleethod from Ortaar and Willumseh will be used here.
attractors such as equilibrium and period-2 orbit if the deterGiven the values of deterrence functions for each O-D pair,
rence function is monotonic. It is easy to prove this result inf(c;;), the algorithm in outline is as follows:

the one-dimensional case, although we have not been able to _ , _
prove it in higher dimensions. (1) Set aI.I t?j(x)=1.0.and finda;(x)’s by (1a that satisfy
the origin constraints.

(2) With the latesta;(x)'s and by (1b), find b;(x)’s which
) . i satisfy the destination constraints.

The doubly constrained model cannot be iterated dlrectl)(3) Keeping theb(x)'s fixed, calculatea,(x)’s, again by
like the unconstrained or singly constrained model, because (1, ) ’ e
it contains two sets of parameteagx) andb;(x) which are (g) Repeat step&2) and (3) until convergence is achieved.

interdependent. The calculation of one set needs the value
of the other set. This suggests an iteration process. The Once the a;j(x)'s and bj(x)'s are determined, the

B. The doubly constrained model
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FIG. 2. Bifurcation diagram of the unconstrained or singly constrained gravity modg), feith ©=7.0, «=1.0, y=1.0.(a) Initial conditions are the same
for all values of; (b) initial conditions are the final states of the previous stepof

Fij(x)’s can be obtained bg3a). Thus the numerical calcu- Bifurcation diagrams were produced for the four param-
lations of the doubly constrained model involve two nestecetersa, y, 4 and g in the model and for models with up to
iterations. The inner iteration is the one outlined above tdour origins and four destinations. The diagrams are, again,
obtain a;(x)’s and b;(x)’s so as to gef;j(x)’s; the outer ~more complicated than those for the unconstrained or singly
iteration isx(n+ 1)=F(x(n)), made forn. constrained model. There does not seem to be an obvious
Numerical calculations showed that the dynamic behavperiodic doubling sequence or any other clear bifurcation
ior in the doubly constrained model is similar to that in theroute in the diagrams. The reason for the more irregular be-
unconstrained or singly constrained models. When the dihavior in the doubly constrained gravity model may be that
mension is lower, there are still only point and period-2 at-the model and the state space are more complicated. The
tractors. When the dimension is high@r or more, the be-  unconstrained or singly constrained model is a mapping of a
havior is more complicated. Chaos was found to exist widelysimplex onto itself while the domain of a doubly constrained
in the model. Figures (8)—5(b) show one of the chaotic modelis an [(—1)(J—1)-dimensional closed convex subset
attractors found in a model of three origins and three destiof a Cartesian product of simplexes.
nations. The time series appears to be even more irregular
than that for the chaotic attractor in the unconstrained of V- CHARACTERIZATION OF CHAOTIC BEHAVIOR
singly constrained mod¢Figure 1b)]. The power spectrum In this section, chaotic behavior found in the gravity
is continuous, implying the motion is chaotic. model is examined by Liapunov exponents and fractal di-
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Bifurcation diagram of the trip distribution model
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X1

0.4

03

4 4.5 5

Beta

FIG. 3. Bifurcation diagram of the unconstrained or singly constrained gravity modg), feith «=8.0, «=1.0, y=1.0. (a) Initial conditions are the same
for all values ofB; (b) initial conditions are the final states of the previous stepsof

mensions. The algorithms for calculating the two measurethe Jacobian matrixF™(x)/dx of the nth iteration F( ()
adopted here will be outlined briefly and then applied to theby J. Then, by the chain rule of differentiation we have
gravity models. The programs developed were tested by cal-

culating the two measures of a chaotic attractor of the well- I=IFMH(x))- - IFIX), 5
known Henon map and good agreements with those in the

M (%)) i i i
literaturé” were obtained. whereJ(F'™(x)) is the Jacobian matrix df evaluated at the

point F™(x). Let o; be theith eigenvalue of the matrix,

A. Liapunov exponents Lim [J*J]v

n—o

Chauotic attractors are the attractors with sensitive depen-
dence on initial condition$ The divergence of neighboring \where J* stands for the transpose df Then theith Li-
trajectories can be measured by positiv@unov exponents  apunov exponent is defined®as
Consider the gravity moded(n+1)=F(x(n)). Let J(x) be
the Jacobian matrix d¥(x) atx e S:J(x) = dF(x)/dx. Denote Ni=Log|qj|.
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Bifurcation diagram of the trip distribution model
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FIG. 4. Enlargements of Figs(8-3(b). (a) Enlargement of Fig. @); (b) enlargement of Fig. ®).

Two methods for calculating Liapunov exponents have beethe first exponent is negative for nonchaotic attractors and is
suggested by Wolét al® and Eckmann and Ruelferespec- positive for chaotic ones.

tively. The second algorithm, which involves calculating the  For the doubly constrained gravity model, the partial de-

product(5) by QR factorizations, is usually preferfeaind is  rivatives in the Jacobian matrix need to be calculated nu-
used here. The algorithm can be used directly to calculate thaerically because the two sets of normalizing factors in the
Liapunov exponents for the unconstrained or the singly conmodel are interdependent. Consider the doubly constrained
strained gravity model. Liapunov exponents for the chaotignodel(3). The partial derivatives can be found to be

attractor shown in Fig. 1 were calculated. The three expo- (9':_” b () F(C; (X ))ia(x)

nents were found to big.20—0.02—0.70], with the first one Mg 3 AT o

being positive. Shown in Fig. 6 is the first Liapunov expo- J

nent againsp with the same values of parameters as those in +a;(x) (¢ (Xj; ))&Tbj(x)

Fig. 2(@). The second and the third exponents are both nega- P “

tive. By comparing Fig. 6 with Fig. (@) it can be seen that +ai(x)bj(x)%f(cij(xij)), (6)
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Time series of doubly constrained gravity model
0.2 T T T T T T T

018 g

016 4

014 d

012 g

trips(x21)

01r i

0.06 -

0.04- _

0. . L 1
%oo 1020 1040 1060 1080 1100 1120 1140 1160

iteration

Power spectrum of doubly constrained gravity model
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FIG. 5. Chaotic attractor of the doubly constrained gravity model, wit#.5, 3=1.25,a¢=1.5, y=1.5. (a) Number of trips from origin 2 to destination 1;
(b) power spectrum.

where J 0;
%0 )7 130,00 F(ey (4 ) 2

d . .
dilf(Cm(Xm), if i=k, j=I,

Jd
- T ()= a
IX I (X)) —b;
K 0, otherwise. x ; (i (xip)) Iy bj(x)
By equations (3b) and (3c), the partial derivatives +b,(x)if(cu(xu))
da;(x)1 9%, and db;(x)/ ax, should satisfy P w1
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Lispunov exponents for the trip distribution model is more efficient and is therefore employed to estimate the
correlation dimension for chaotic attractors in the gravity
models.

The correlation dimension is defined based onc¢be
relation functionof an attractor. A correlation function is
the average fraction of points within a certain radjusn
the attractor. Let the sequence ofN points
{x(1),...x(n),... x(N)}be an orbit on an attractor in system
(2). Then the correlation functio€(p) of the attractor is

Liapunov exponents

given by*°
_0.‘;.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 34 35 1
beta C(p)= leNz{The number of points (x(m),x(n))
N—oo
FIG. 6. The first Liapunov exponents agairtfor the unconstrained or
singly constrained gravity model. such that |X( m)—x(n) | <p}-

The correlation dimensioB is defined a¥

_ d L log C(p)
W|<|bj(X)_(Eif'ili(x)f(cij(Xij)))2 De=Lim logp

p—0
X2,

In other words, it is the slope of the plot of Igg(p)) versus
log(p).

Using the above algorithm, the dimension for the chaotic
attractor in Fig. 1 found in the unconstrained or singly con-
strained gravity model is calculated. The dimension esti-
mated from the log—log plot of the correlation function is
1.8251, though the attractor lies in a three-dimensional state
space. Also calculated is the correlation dimension for the
chaotic attractor shown in Fig. 5 in the doubly constrained
gravity model. The state space of this model is four dimen-
sional. The slope of the log—log plot of the correlation func-
tion, or the correlation dimension, is found to be 1.653.
These results mean that the dynamic gravity modeldssa
f(cu(x”)) a.( ) sipative systemthe phase volume shrinks with time. The

state space of the models considered above is three or four
dimensional, but the evolution of the system is such that the
final variations of O—D flows settle down in the state space
to a region of dimension 1.7 or 1.8.

J
f(C.,(X.,)) a(x)

J
+ai(X)Wklf(Cij(Xij)) ,
which can be simplified as

2
Cao--200y

OXk 0;

[f( .,(X”)) bj(x)

+0j(x) f(c”(x”))

P CXC0)
i

+a(X) f(C.,(X.,))

fori, k=1,2,...], andj,|=1,2,...].

There are (+J) X 1XJ equations which are linear with \, coNCLUSIONS
respect to the same number of unknowas;(x)/dx,; and _ _ _ _
dbj(x)/dx,, . Thus, the set of equations can be solved nu- ~ The dynamic gravity model has been investigated nu-
merically. The partial derivatives can then be found@yto ~ Merically in an attempt to identify different types of dynamic
get the Jacobian matrix. The algorithm by Eckmann and’ehavior in the model. Point attractors and period-2 attrac-
Ruelle can now be used to calculate the Liapunov exponent§rs have been found to be the main feature in the models of
for the doubly constrained gravity model. Liapunov expo-lower dimensions. When the dimension is higt@or more
nents were calculated for the chaotic attractor shown in Figfor unconstrained or singly constrained model, and 4 or more
5 and the result i§0.1248—0.1449—0.3597—0.9477. The  for the doubly constrained modelperiod doubling, chaos,

first one is positive, which confirms the attractor is chaotic. @nd other complicated bifurcations were found. The presence
of chaos was confirmed by positive Liapunov exponents and

fractal dimension. What behavior the system would exhibit
in practice will depend on the values that the parameters can
Fractal dimensions may be used to characterize the gedake. These parameter values are normally different for dif-
metric feature of chaotic attractors. Several types of fractaferent geographical areas. For a particular area, empirical
dimension have been defined in the literattffdhe main  studies are needed to determine the type of model and the
reason here for choosing one type of dimension over anothefalues of parameters in the model. Then we are able to find
is the ease and accuracy of its computation. The commonlgut if the system would stick to a stable equilibrium or if the
used box-counting algorithm for calculating the fractal di- behavior would be chaotic.
mension is very inefficient? The algorithm for computing The significance of the results of the paper may be of
the correlation dimensiondue to Grassberger and Procaécia twofold. First, it is important for transport planners and en-

B. Fractal dimensions
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gineers to be aware of the potential of irregular or chaotianents and suggestions on an earlier draft of this paper. The
behavior in the gravity model. It is also important to be first author is grateful to Middlesex University for providing
aware that an equilibrium in the gravity model may not bea studentship which supported the major part of the research
unique and stable. Even though the unstable or chaotic betescribed in this paper.
havior is not dominant in the system, it may occur tempo-
rarily as a result of disturbances caused by traffic incidence
or accidents. It would be misleading to predict an O-D flow
pattern(at a presumed equilibriunfrom a static model when
an underlying system is not at an equilibrium steady state1; ge p. Ortuzar and L. G. WillumseModelling TransporiWiley, New
Secondly, when the system is in a chaotic regime, we cannotyork, 1990.
use the model to predict the future variations of the system agD. S. Dendrinos and M. Sonischaos and Social-Spatial Dynamics
we normally do with a deterministic model. However, the (Springer-Verlag, Berlin, 1990 _ _ _
variations will be confined in the region of the chaotic attrac- 0- F: Jamett and X. Zhang, “The dynamic behavior of road traffic flow:

. . stability or chaos?”BCS Displays Group: Application of Fractals and
tor, whose shape, position, and so on can be examined t0 geknaos edited by A. J. Crilly, R. A. Earnshaw, and H. Jor@ringer-
some idea on the variations and distributions of O—D flows verlag, Berlin, 1993
in the state space. For example, here, the final variations ofX. zhang and D. F. Jarrett, “Traffic equilibrium in a dynamic trip assign-
O-D flows in three- or four-dimensional systems were found ment model and a‘dynamic gravi‘ty modelTransportation Ngtworks:
to settle down in the state space to a region of dimension E)fgerl‘;g";th"do'og'ca' Advancedited by M. G. H. Bel(Elsevier, Ox-
between 1 and 2. Further research should put more emphas*%. M T. Thompson and H. B. StewalNonlinear Dynamics and Chaos:
on the validation and calibration of the gravity model, and on Geometrical Methods for Engineers and Scientidéiley, New York,
finding out to what extent the form of deterrence functions 1988.
and parameters values may be “borrowed” or transferred®R. Conte and M. Dubois, “Liapunov exponents of experimental sys-
from one area to another. It would also be of interest to carry te_ms,” Nonlinear Evolutionsedited by J. J. P. LeofWorld Scientific,

. . . . . Singapore, 1988

out theoretical analysis on the typical bifurcation sequence,
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