
Concurrent Programming
(Part 4)

Copyright © 2024 by
Robert M. Dondero, Ph.D.

Princeton University

1

Objectives

• We will cover:
– Environment variables
– Realistic example: I/O delays
– Realistic example: compute delays
– The Python GIL
– Concurrency commentary

2

Agenda

• Environment variables
• Realistic example: I/O delays
• Realistic example: compute delays
• The Python GIL
• Concurrency commentary

3

Environment Vars
• Environment variables

– Each process has a set of environment
vars

• PATH=...
• SHELL=...
• QUERY_STRING=...
• …

– Each child process inherits the
environment vars of its parent process

4

Environment Vars

$ printenv
$ printenv SOMEVAR
$ echo $SOMEVAR

$ export SOMEVAR=somevalue

In the Bash shell (on Linux or Mac):

5

Environment Vars

C:\>echo %SOMEVAR%

C:\>set SOMEVAR=somevalue

In a Command Prompt window (on MS
Windows):

6

Environment Vars

import os
…
somevalue = os.environ['SOMEVAR']
somevalue = os.environ.get('SOMEVAR', default)

import os
…
os.environ['SOMEVAR'] = somevalue

In Python:

7

Environment Vars
• Question:

– How can a Python process accept data
from its user?

• Answers:
– By reading it (from stdin, a file, a socket,

or a pipe)
– Through a command-line argument
– Through an environment variable

8

Environment Vars
• See envvar1.py

9

$ export GREETING=hello
$ python envvar1.py
hello
$

$ unset GREETING
$ python envvar1.py
hi
$

In the bash shell
(Mac/Linux):

$ set GREETING=hello
$ python envvar1.py
hello
$

In a Command Prompt
window (MS Windows):

Environment Vars
• The Python dotenv module

– Python-specific mechanism for
setting/getting env vars

– To install:

10

$ python -m pip install python-dotenv

Environment Vars
• The Python dotenv module (cont.)

– To use in Python code (step 1)

11

SOMEVAR=somevalue
…

.env file:

Environment Vars
• The Python dotenv module (cont.)

– To use in Python code (step 2)

12

import dotenv
…
dotenv.load_dotenv()
SOME_VAR = os.environ.get('SOMEVAR', default)
…

.py file:

(1) Looks for SOMEVAR as env var; if not found…
(2) Looks for SOMEVAR in .env file, if not found…
(3) Uses default

Environment Vars
• See .env, envvar2.py

13

$ unset GREETING
$ python envvar2.py
hello
$

$ export GREETING=bonjour
$ python envvar2.py
bonjour
$

$ rm .env
$ python envvar2.py
hi
$

Agenda

• Environment variables
• Realistic example: I/O delays
• Realistic example: compute delays
• The Python GIL
• Concurrency commentary

14

Realistic Example: I/O Delays

• See DaytimeIODelay application
– Almost same as DayTime app from Network

Programming lectures
– daytimeclient.py
– daytimeserver.py

• Enhanced to implement iodelay
– Delay caused by waiting for another service (e.g.,

database)

15

Realistic Example: I/O Delays

16

$ export IODELAY=5
$ python daytimeserver.py 55555
Opened server socket

Bound server socket to port

Listening

Accepted connection

Opened socket

Closed socket

Accepted connection

Opened socket

Closed socket

Accepted connection

Opened socket

Closed socket

See DaytimeIODelay app:

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:23:58 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:24:03 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:24:08 2024

$

$ date
Wed Sep 25 13:23:52 EDT 2024

$

Realistic Example: I/O Delays

• See DaytimeIODelayP
– daytimeclient.py
– daytimeserver.py

• Forks a new process to handle each client
request

17

Realistic Example: I/O Delays

18

$ export IODELAY=5
$ python daytimeserver 55555
Opened server socket

Bound server socket to port

Listening

Accepted connection

Opened socket

Closed socket in parent process

Forked child process

Closed socket in child process

Exiting child process

Accepted connection

Opened socket

Closed socket in parent process

Forked child process

Closed socket in child process

Exiting child process

Accepted connection

Opened socket

Closed socket in parent process

Forked child process

Closed socket in child process

Exiting child process

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:25:54 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:25:55 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:25:55 2024

$

$ date
Wed Sep 25 13:25:48 EDT 2024

$

See DaytimeIODelayP app:

Aside: Waiting in Python

19

Parent process forks child process
Parent process waits for child process

Parent process forks child process
Parent process proceeds
Child process exits
Parent process receives SIGCHLD signal
Parent process waits for child process

Parent process forks child process
Parent process proceeds
Parent process forks child process

Proper pattern

Alternative
proper pattern

Acceptable in
Python

Realistic Example: I/O Delays

• See DaytimeIODelayT
– daytimeclient.py
– daytimeserver.py

• Spawns a new thread to handle each client
request

20

Realistic Example: I/O Delays

21

$ export IODELAY=5
$ python daytimeserver.py 55555
Opened server socket

Bound server socket to port

Listening

Accepted connection

Opened socket

Spawned child thread

Closed socket in child thread

Exiting child thread

Accepted connection

Opened socket

Spawned child thread

Closed socket in child thread

Exiting child thread

Accepted connection

Opened socket

Spawned child thread

Closed socket in child thread

Exiting child thread

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:27:06 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:27:07 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:27:07 2024

$

$ date
Wed Sep 25 13:27:01 EDT 2024

$

See DaytimeIODelayT app:

Agenda

• Environment variables
• Realistic example: I/O delays
• Realistic example: compute delays
• The Python GIL
• Concurrency commentary

22

Realistic Example: Compute Delays

• See DaytimeCDelay application
– [Almost same as DayTime app from Network

Programming lectures]
– daytimeclient.py
– daytimeserver.py

• Enhanced to implement cdelay
– Delay caused by performing a time-consuming

computation (e.g., matrix manipulation)

•

23

Realistic Example: Compute Delays

24

$ export CDELAY=5
$ python daytimeserver.py 55555
Opened server socket

Bound server socket to port

Listening

Accepted connection

Opened socket

Closed socket

Accepted connection

Opened socket

Closed socket

Accepted connection

Opened socket

Closed socket

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:40:54 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:40:59 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:41:04 2024

$

$ date
Wed Sep 25 13:40:48 EDT 2024

$

See DaytimeCDelay app:

Realistic Example: Compute Delays

• See DaytimeCDelayP
– daytimeclient.py
– daytimeserver.py

• Forks a new process to handle each client
request

25

Realistic Example: Compute Delays

26

$ export CDELAY=5
$ python daytimeserver.py 55555
Opened server socket

Bound server socket to port

Listening

Accepted connection

Opened socket

Closed socket in parent process

Forked child process

Closed socket in child process

Exiting child process

Accepted connection

Opened socket

Closed socket in parent process

Forked child process

Closed socket in child process

Exiting child process

Accepted connection

Opened socket

Closed socket in parent process

Forked child process

Closed socket in child process

Exiting child process

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:42:18 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:42:19 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:42:19 2024

$

$ date
Wed Sep 25 13:42:13 EDT 2024

$

See DaytimeCDelayP app:

Realistic Example: Compute Delays

• See DaytimeCDelayT
– daytimeclient.py
– daytimeserver.py

• Spawns a new thread to handle each client
request

27

Realistic Example: Compute Delays

28

$ export CDELAY=5
$ python daytimeserver.py 55555
Opened server socket

Bound server socket to port

Listening

Accepted connection

Opened socket

Spawned child thread

Closed socket in child thread

Exiting child thread

Accepted connection

Opened socket

Spawned child thread

Closed socket in child thread

Exiting child thread

Accepted connection

Opened socket

Spawned child thread

Closed socket in child thread

Exiting child thread

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:45:24 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:45:23 2024

$

$ python daytimeclient.py localhost 55555
Wed Sep 25 13:45:24 2024

$

$ date
Wed Sep 25 13:45:09 EDT 2024

$

What!!! Why???

See DaytimeCDelayT app:

Agenda

• Environment variables
• Realistic example: I/O delays
• Realistic example: Compute delays
• The Python GIL
• Concurrency commentary

29

The Python GIL

• Suppose process has threads T1 and T2
• In principle:

– Multiple processors available =>
T1 and T2 run in parallel

• In Java and C/pthread:
– Multiple processors available =>

T1 and T2 run in parallel

30

The Python GIL

• In Python (specifically CPython):
– Multiple processors available =>

T1 and T2 do not run in parallel!!!
– Global Interpreter Lock (GIL)

• Allows only one of P1’s threads to execute at a
time…

• As if only one processor exists

31

The Python GIL

• GIL advantages
– Simplifies Python memory management

(reference counting)
• GIL disadvantage

– Multi-threaded programs can use only one
processor (at a time)

• Multiple threads cannot run in parallel

32

The Python GIL

• So, in Python…

33

Kind of
Program

Example Then use:

I/O-bound Program waits for DB
comm to complete

Thread-level
concurrency

Compute-
bound

Program performs
complex math
computation

Process-level
concurrency *

* But better not to use Python at all!

Agenda

• Environment variables
• Realistic example: I/O delays
• Realistic example: compute delays
• The Python GIL
• Concurrency commentary

34

Concurrency Commentary

• Process-level concurrency is:
– Essential, esp. at system level
– Safe: concurrent processes share no data
– Slow: forking processes is slow

• Thread-level concurrency is:
– Essential, esp. at application level
– Dangerous: concurrent threads can share

objects => potential race conditions, potential
deadlocks

– Fast: spawning threads is fast

35

Concurrency Commentary

• Some rhetorical questions:
– Should all objects automatically be

thread-safe?
• Should all fields automatically be private and all

methods automatically be “locked”?

36

“It is astounding to me that Java’s insecure
parallelism is taken seriously by the
programming community, a quarter of a
century after the invention of monitors and
Concurrent Pascal. It has no merit.”
-- Per Brinch Hansen, 1999

Concurrency Commentary

• Some rhetorical questions (cont.):
– Should methods be “locked” by default?
– Should we use process-level concurrency

instead of thread-level concurrency
whenever possible?

– In the long run, is thread-level concurrency a
passing phase?

37

Concurrency Resources

• For more information:
– Alex Martelli, Anna Ravenscroft, and Steve

Holden. Python in a Nutshell, Chapter 14.
– Cay Horstmann. Core Java (Volume 1),

Chapter 14.
– And then OS textbooks

38

Summary

• We have covered:
– Environment variables
– Realistic example: I/O delays
– Realistic example: compute delays
– The Python GIL
– Concurrency commentary

39

Summary

• We have covered:
– How to fork and wait for processes
– How to spawn and join threads
– Race conditions and how to avoid them
– Environment variables
– Realistic example
– The Python GIL
– Commentary

• See also:
– Appendix 1: Deadlocks

40

Appendix 1:
Deadlocks

Deadlocks

• Problem: Deadlock
– Simplest case…
– Thread1

• Has the lock on object1
• Needs the lock on object2

– Thread2
• Has the lock on object2
• Needs the lock on object1

– Thread1 and thread2 block forever

42

Deadlocks

• See deadlock.py
– alice_acct: 0
– bob_acct: 0
– alice_to_bob_thread

• Transfer 1 from alice_acct to bob_acct, 1000
times

– bob_to_alice_thread
• Transfer 1 from bob_acct to alice_acct, 1000

times
– alice_acct: 0
– bob_acct: 0

43

Deadlocks

• See deadlock.py (cont.)

44

$ python deadlock.py
…
Alice: -26
Bob: 26
Alice: -27
Bob: 27
Alice: -28
Bob: 28
Alice: -29
Bob: 29
Alice: -30
Bob: 30

$ python deadlock.py
…
Alice: -100
Bob: 100
Alice: -101
Bob: 101
Alice: -102
Bob: 102
Alice: -103
Bob: 103
Alice: -104
Bob: 104

Deadlocks

• See deadlock.py

45

(1) start() (2) start()

(3) alice_acct.transfer_to(bob_acct, 1) (4) bob_acct.transfer_to(alice_acct, 1)

Deadlock

alice_to_bob_thread bob_to_alice_thread

alice_acct bob_acct

Two BankAcct objects:
aliceAcct, bobAcct
Two Threads:
aliceToBobThread,
bobToAliceThread

alice_to_bob_thread
 Has lock on alice_acct
 Needs lock on bob_acct

bob_to_alice_thread
 Has lock on bob_acct
 Needs lock on alice_acct

Deadlocks

• See deadlockw.py

• Uses with statement

46

Deadlocks

• Deadlock general case (circular chain):
– Thread1 has the lock on object1; needs the

lock on object2
– Thread2 has the lock on object2; needs the

lock on object3
– …
– Thread N has the lock on object N; needs the

lock on object 1

47

Deadlocks

• Solution:
– Make sure there are no circular chains!
– Give each shared resources a sequence

number
– Pact: Thread must acquire shared resources

in order by sequence number

48

Deadlocks

• See nodeadlock.py

49Works!

$ python nodeadlock.py
…
Alice: -4
Bob: 3
Alice: -3
Bob: 2
Alice: -2
Bob: 1
Alice: -1
Bob: 0
Alice: 0
Finished
$

$ python nodeadlock.py
…
Bob: -4
Alice: 3
Bob: -3
Alice: 2
Bob: -2
Alice: 1
Bob: -1
Alice: 0
Bob: 0
Finished
$

Deadlocks

• See nodeadlockw.py

• Uses with statement

50

