
Concurrent Programming
(Part 3)

Copyright © 2024 by
Robert M. Dondero, Ph.D.

Princeton University

1

Objectives

• We will cover:
– Thread safety
– Thread conditions
– Inter-process communication
– Inter-thread communication

2

Agenda

• Thread safety
• Thread conditions
• Inter-process communication
• Inter-thread communication

3

Thread Safety

• Recall lockinresource.py
– A context switch can occur between any 2

machine lang instructions
– Implications:

• get_balance() should be protected by locking
• _balance should be private

– But cannot be

4

Thread Safety

• Thread safety
– Oversimplification…
– An object is thread-safe if all of its methods

are “locked” & all of its fields are private

5

Thread Safety

• Java
– Methods can be locked (synchronized)
– Fields can be private
– Objects can be thread-safe

• Python
– Methods can be locked
– Fields cannot be private
– Any object that has fields cannot be

thread-safe

6

Agenda

• Thread safety
• Thread conditions
• Inter-process communication
• Inter-thread communication

7

Thread Conditions

• Observation (concerning
lockinresource.py):
– Before withdrawing, withdraw thread should

wait for the bank account balance to be
sufficiently large

– After depositing, deposit thread should notify
waiting threads that they can try again

8

Thread Conditions

• Observation (in general):
– Sometimes a consumer thread must wait

for a condition on a shared object to become
true

– Sometimes a producer thread must change
the condition, and notify waiting threads that
they can try again

• Implementation: Thread conditions

9

Thread Conditions

• See conditions.py

10

$ python conditions.py
1
2
3
4
5
6
7
8
9
10
8
6
4
2
0
Final balance: 0
$

$ python conditions.py
1
2
3
4
5
3
1
2
3
4
5
6
4
2
0
Final balance: 0
$

Thread Conditions

• See conditions.py (cont.)
– condition.notify_all()

• Moves all threads waiting on this object from
waiting state to runnable state

– condition.wait()
• Releases the lock
• Moves current thread from runnable state to

waiting state
• Upon return, reacquires lock

11

Thread Conditions

• See conditionsw.py

– Uses with statement

12

consumer thread
 while (! objectstateok)
 condition.wait();
 // Do what should be done when
 // objectstateok is true.

producer thread
 // Change objectstate.
 condition.notify_all();

Thread conditions pattern:

Thread Conditions

13

Aside: Thread States

New

Runnable

Terminated

start()

run() returns

Blocked

Waiting

acquiring a lock

lock acquired

waiting for notification

notification occurred

14

Cay Horstmann.
Core Java: Volume 1

At any time OS gives processor(s) to Runnable thread(s)

Agenda

• Thread safety
• Thread conditions
• Inter-process communication
• Inter-thread communication

15

Inter-Process Communication

• Processes do not share objects, so…
• Inter-process comm cannot be

accomplished via a shared object…

16

Inter-Process Communication

• Pipe
– An operating system (not a Python) feature

17

Producer
Process

Consumer
Process

Inter-Process Communication

18

send recvpipe

Pipe has a finite size (determined by OS)
Producer process “sends” to pipe

send() blocks while pipe is full
Consumer process “receives” from pipe

recv() blocks while pipe is empty

Inter-Process Communication

• See prodconprocesses.py

19

$ python prodconprocesses.py
...
Produced: 95
Consumed: 95
Produced: 96
Consumed: 96
Produced: 97
Consumed: 97
Produced: 98
Consumed: 98
Produced: 99
Consumed: 99
Finished
$

Agenda

• Thread safety
• Thread conditions
• Inter-process communication
• Inter-thread communication

20

Inter-Thread Communication

• Threads share objects, so…
• Inter-thread comm can be accomplished

via a shared object…

21

Inter-Thread Communication

• Python Queue class
– Semi-thread-safe
– Designed for inter-thread comm

22

Inter-Thread Communication

• Use case 1:

23

…
q = queue.Queue()
…
q.put(item)
…
try:
 item = q.get(block=False)
except queue.Empty:
 # The queue is empty.

Queue
object
can contain
an unlimited
number of
items

Producer
Thread Queue

Consumer
Thread

Inter-Thread Communication

24

Producer thread “puts” data to Queue object
Consumer thread “gets” data from Queue object

get() throws exception if Queue object is empty

put get

Inter-Thread Communication

• Use case 2:

25

…
q = queue.Queue(n)
…
q.put(item)
Waits if q is full.
Notifies when finished.
Some other thread might be
waiting for q to have some items.
…
item = q.get()
Waits if q is empty.
Notifies when finished.
Some other thread might be
waiting for q to have some room.
…

Queue
object can
contain up to
n items

ProducerThread Queue ConsumerThread

Inter-Thread Communication

26

Queue object has a finite size (determined by
Python pgm)
Producer thread “puts” to Queue object

put() waits while Queue object is full
put() notifies when finished

Consumer thread “gets” from Queue object
get() waits while Queue object is empty
get() method notifies when finished

put get

Inter-Thread Communication

• See prodconthreads.py

27

$ python prodconthreads.py
...
Produced: 97
Consumed: 93
Produced: 98
Consumed: 94
Produced: 99
Consumed: 95
Consumed: 96
Consumed: 97
Consumed: 98
Consumed: 99
Finished
$

Inter-Thread Communication

• See prodconthreads.py (cont.)
– Observation: It’s a good thing that Queue

objects are semi-thread-safe

28

Summary

• We have covered:
– Thread safety
– Thread conditions
– Inter-process communication
– Inter-thread communication

• See also:
– Appendix 1: Threads in Java
– Appendix 2: Threads in C

29

Appendix 1:
Threads in Java

30

Threads in Java

• See Conditions.java

31

$ javac Conditions.java
$ java Conditions
1
2
3
4
5
6
7
8
9
10
8
6
4
2
0
Final balance: 0
$

Appendix 2:
Threads in C

32

Threads in C

• See conditions.c

33

$ gcc -pthread conditions.c -o conditions
$./conditions
1
2
3
4
5
6
7
8
9
10
8
6
4
2
0
Final balance: 0
$

