
Proving the Equivalence of Two
Modules

COS 326
Andrew Appel

Princeton University

slides copyright 2020 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

Abstraction

• When explaining our modules to clients, we would like to explain
them in terms of abstract values
– sets, not the lists (or maybe trees) that implement them

• From a client’s perspective, operations act on abstract values
• Signature comments, specifications, preconditions and post-

conditions should be defined in terms of those abstract values
• How are these abstract values connected to the implementation?

module type SET =
 sig
 type ‘a set
 val empty : ‘a set
 val mem : ‘a -> ‘a set -> bool
 ...
end

Abstraction

{1, 2, 3}

{ }

{4, 5}

[1; 1; 2; 3; 2; 3] [4, 5]

[5, 4]

user’s view:

implementation
view:

sets of integers

[]
[1; 2; 3]

[4, 5, 5]

lists of
integers

Abstraction

{1, 2, 3}

{ }

{4, 5}

[1; 1; 2; 3; 2; 3] [4, 5]

[5, 4]

user’s view:

implementation
view:

sets of integers

[]
[1; 2; 3]

[4, 5, 5]

lists of
integers

there’s a
relationship
here,
of course!

we are
trying to
implement
the
abstraction

Abstraction

{1, 2, 3}

{ }

{4, 5}

[1; 1; 2; 3; 2; 3] [4, 5]

[5, 4]

user’s view:

implementation
view:

sets of integers

[]
[1; 2; 3]

[4, 5, 5]

lists of
integers

this
relationship
is a
function:
it converts
concrete
values to
abstract
ones

function called
“the abstraction function”

Abstraction

{1, 2, 3}

{ }

{4, 5}

[1; 1; 2; 3; 2; 3] [] [4, 5]
[1; 2; 3]

[4, 5, 5]

[5, 4]

abstraction
function

user’s view:

implementation
view:

sets of integers

lists of
integers

inv(x):
no duplicates A Representation

Invariant cuts down
the domain of the
abstraction function

Specifications

{1, 2} {1, 2, 3}

user’s view:

add 3

a specification
tells us what
operations on
abstract values
do

implementation
view:

Specifications

{1, 2} {1, 2, 3}

[1; 2]

user’s view:

implementation
view:

add 3

inv(x)

a specification
tells us what
operations on
abstract values
do

Specifications

{1, 2} {1, 2, 3}

[1; 2] [3; 1; 2]

user’s view:

implementation
view:

add 3

add 3

inv(x)

a specification
tells us what
operations on
abstract values
do

Specifications

{1, 2} {1, 2, 3}

[1; 2] [3; 1; 2]

user’s view:

implementation
view:

add 3

add 3

inv(x)

In general:
related arguments
are mapped
to related
results

a specification
tells us what
operations on
abstract values
do

Specifications

{1, 2} {1, 2, 3}

[1; 2] [3; 1; 3]

user’s view:

implementation
view:

add 3

add 3

inv(x)

{3; 1}≠

Bug! Implementation
does not correspond
to the correct abstract
value!

Specifications

{1, 2} {1, 2, 3}

[1; 2] [3; 1; 2]

[3; 2; 1]

implementation
must correspond
no matter which
concrete value
you start with

user’s view:

implementation
view:

add 3

[2; 1]

add 3

add 3

inv(x)

specification

A more general view

a1 a2

c1 c2

abs

f_abs

f_con

abs

abstraction function

abstract operation
with type t -> t

concrete operation
to prove:
 for all c1:t, if inv(c1) then f_abs (abs c1) == abs (f_con c1)

abstract then apply the abstract op == apply concrete op then abstract

Another Viewpoint
A specification is really just another implementation (in this viewpoint)

– but it’s often simpler (“more abstract”)
We can use similar ideas to compare any two implementations of
the same signature. Just come up with a relation between
corresponding values of abstract type.

M1.v2

M2.v1

M1.f

relation
defining

corresponding
values

module M1:

module M2:
M2.f

M2.v2

M1.v1

We ask: Do operations like f take related arguments to related results?

relation
defining
corresponding
values

What is a specification?
It is a logical formula that characterizes the allowed observable
behavior of the program.

. . . but . . .

for the purposes of this course
(and in the design of many real-world program analysis tools) . . .

instead of logical formulae, we will use programs to express the
behavior we want.

This is only useful if the specification programs are simpler
and easier to understand than the implementation programs.

In that case: What is a specification?
It is really just another implementation

– but it’s often simpler (“more abstract”)
We can use similar ideas to compare any two implementations of
the same signature. Just come up with a relation between
corresponding values of abstract type.

M2.v1
M1.f

M2.v2

M1.v1

M1.v2

M2.f

relation defining
corresponding
values

One Signature, Two Implementations

module type S =
 sig
 type t
 val zero : t
 val bump : t -> t
 val reveal : t -> int
 end

module M1 : S =
 struct
 type t = int
 let zero = 0
 let bump n = n + 1
 let reveal n = n
 end

module M2 : S =
 struct
 type t = int
 let zero = 2
 let bump n = n + 2
 let reveal n = n/2 - 1
end

Consider a client that might use the module:

What is the relationship?

let x1 = M1.bump (M1.bump (M1.zero) let x2 = M2.bump (M2.bump (M2.zero)

is_related (x1, x2) =
 x1 == x2/2 - 1

And it persists: Any sequence of operations produces related results from M1 and M2!

One Signature, Two Implementations

module type S =
 sig
 type t
 val zero : t
 val bump : t -> t
 val reveal : t -> int
 end

module M1 : S =
 struct
 type t = int
 let zero = 0
 let bump n = n + 1
 let reveal n = n
 end

module M2 : S =
 struct
 type t = int
 let zero = 2
 let bump n = n + 2
 let reveal n = n/2 - 1
end

Recall: A representation invariant is a property that holds for all values of abs. type:
• if M.v has abstract type t,

• we want inv(M.v) to be true

Inter-module relations are a lot like representation invariants!
• if M1.v and M2.v have abstract type t,

• we want is_related(M1.v, M2.v) to be true

It’s just
a relation
between
two modules
instead of
one

Relations may imply the Rep Inv
When defining our relation, we will often do so in a way that
implies the representation invariant.

ie: a value in M1 will not be related to any value in M2 unless it
satisfies the representation invariant.

M2.v1
M1.f

M2.v2

M1.v1

M1.v2

M2.f

v1'
?

One Signature, Two Implementations

module type S =
 sig
 type t
 val zero : t
 val bump : t -> t
 val reveal : t -> int
 end

module M1 : S =
 struct
 type t = int
 let zero = 0
 let bump n = n + 1
 let reveal n = n
 end

module M2 : S =
 struct
 type t = int
 let zero = 2
 let bump n = n + 2
 let reveal n = n/2 - 1
end

is_related (x1, x2) =
 (x1 == x2/2 – 1) && x1 >= 0 && even x2

is_related (x1, x2) implies x1 >= 0

is_related (x1, x2) implies even x2 && x2 > 0

rep inv for M1

rep inv for M2

One Signature, Two Implementations

module type S =
 sig
 type t
 val zero : t
 val bump : t -> t
 val reveal : t -> int
 end

module M1 : S =
 struct
 type t = int
 let zero = 0
 let bump n = n + 1
 let reveal n = n
 end

module M2 : S =
 struct
 type t = int
 let zero = 2
 let bump n = n + 2
 let reveal n = n/2 - 1
end

is_related (x1, x2) =
 (x1 == x2/2 – 1)But For Now:

One Signature, Two Implementations

Consider zero, which has abstract type t.

is_related (x1, x2) =
 x1 == x2/2 - 1

Must prove: is_related (M1.zero, M2.zero)

Proof:
 M1.zero
== 0 (substitution)
== 2/2 – 1 (math)
== M2.zero/2 – 1 (substitution)

Equvalent to proving: M1.zero == M2.zero/2 – 1

module type S =
 sig
 type t
 val zero : t
 val bump : t -> t
 val reveal : t -> int
 end

module M1 : S =
 struct
 type t = int
 let zero = 0
 let bump n = n + 1
 let reveal n = n
 end

module M2 : S =
 struct
 type t = int
 let zero = 2
 let bump n = n + 2
 let reveal n = n/2 - 1
 end

One Signature, Two Implementations

Consider bump, which has abstract type t -> t.

Must prove for all v1:int, v2:int
if is_related(v1,v2) then is_related (M1.bump v1, M2.bump v2)

Proof:
(1) Assume is_related(v1, v2).
(2) v1 == v2/2 – 1 (by def)

Next, prove:
(M2.bump v2)/2 – 1 == M1.bump v1

(M2.bump v2)/2 - 1
== (v2 + 2)/2 – 1 (eval)
== (v2/2 – 1) + 1 (math)
== v1 + 1 (by 2)
== M1.bump v1 (eval, reverse)

module type S =
 sig
 type t
 val zero : t
 val bump : t -> t
 val reveal : t -> int
 end

module M1 : S =
 struct
 type t = int
 let zero = 0
 let bump n = n + 1
 let reveal n = n
 end

module M2 : S =
 struct
 type t = int
 let zero = 2
 let bump n = n + 2
 let reveal n = n/2 - 1
 end

is_related (x1, x2) =
 x1 == x2/2 - 1

One Signature, Two Implementations

Consider reveal, which has abstract type t -> int.

Must prove for all v1:int, v2:int
if is_related(v1,v2) then M1.reveal v1 == M2.reveal v2

Proof:
(1) Assume is_related(v1, v2).
(2) v1 == v2/2 – 1 (by def)

Next, prove:
M2.reveal v2 == M1.reveal v1

M2.reveal v2
== v2/2 – 1 (eval)
== v1 (by 2)
== M1.reveal v1 (eval, reverse)

module type S =
 sig
 type t
 val zero : t
 val bump : t -> t
 val reveal : t -> int
 end

module M1 : S =
 struct
 type t = int
 let zero = 0
 let bump n = n + 1
 let reveal n = n
 end

module M2 : S =
 struct
 type t = int
 let zero = 2
 let bump n = n + 2
 let reveal n = n/2 - 1
 end

is_related (x1, x2) =
 x1 == x2/2 - 1

Summary of Proof Technique
To prove M1 == M2 relative to signature S,

– Start by defining a relation “is_related”:
• is_related (v1, v2) should hold for values with abstract type t when v1

comes from module M1 and v2 comes from module M2

– Extend “is_related” to types other than just abstract t. For example:
• if v1, v2 have type int, then they must be exactly the same

– ie, we must prove: v1 == v2
• if v1, v2 have type s1 -> s2 then we consider arg1, arg2 such that:

– if is_related(arg1, arg2) at type s1 then we prove
– is_related(v1 arg1, v2 arg2) at type s2

• if v1, v2 have type s option then we must prove:
– v1 == None and v2 == None, or
– v1 == Some u1 and v2 == Some u2 and is_related(u1, u2) at type s

– For each val v:s in S, prove is_related(M1.v, M2.v) at type s

MODULES WITH DIFFERENT
IMPLEMENTATION TYPES

One Signature, Two Implementations

module type S =
 sig
 type t
 val zero : t
 val bump : t -> t
 val reveal : t -> int
 end

module M1 : S =
 struct
 type t = int
 let zero = 0
 let bump n = n + 1
 let reveal n = n
 end

module M2 : S =
 struct
 type t = int
 let zero = 2
 let bump n = n + 2
 let reveal n = n/2 - 1
 end

Different representation types

module M1 : S =
 struct
 type t = int
 let zero = 0
 let bump x = x + 1
 let reveal x = x
 end

module M2 : S =
 struct
 type t = Zero | S of t
 let zero = Zero
 let bump x = S x
 let rec reveal x =
 match x with
 | Zero -> 0
 | S x -> 1 + reveal x
 end

module type S =
 sig
 type t
 val zero : t
 val bump : t -> t
 val reveal : t -> int
end

The Same Principle Applies!

Two modules with abstract type t will be declared equivalent if:
• one can define a relation between corresponding values of type t
• one can show that the relation is preserved by all operations

If we do indeed show the relation is “preserved” by operations of the
module (an idea that depends crucially on the signature of the
module) then no client will ever be able to tell the difference between
the two modules even though their data structures are implemented
by completely different types!

Different Representation Types

module M1 : S =
 struct
 type t = int
 let zero = 0
 let bump x = x + 1
 let reveal x = x
 end

module M2 : S =
 struct
 type t = Zero | S of t
 let zero = Zero
 let bump x = S x
 let rec reveal x =
 match x with
 | Zero -> 0
 | S x -> 1 + reveal x
 end

module type S =
 sig
 type t
 val zero : t
 val bump : t -> t
 val reveal : t -> int
end

is_related (x1, x2) =
 x1 == M2.reveal x2

Module Abstraction

John Reynolds, 1935-2013
Discovered the polymorphic lambda calculus (first polymorphic type system).
Developed Relational Parametricity: A technique for proving the equivalence of modules.

Summary: Abstraction and Equivalence

Abstraction functions define the relationship between a concrete
implementation and the abstract view of the client

– We should prove concrete operations implement abstract ones
described to our customers/clients

We prove any two modules are equivalent by
– Defining a relation between values of the modules with abstract type
– We get to assume the relation holds on inputs; prove it on outputs

Rep invariants and “is_related” predicates are called logical relations

Machine-checked proofs
with specifications in

formal logic
using the Coq proof assistant

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Preview of COS 510 “Programming Languages”

David Walker
Princeton
University

Prerequisites for COS 510
if you’re an undergrad

1. COS 326 Functional Programming

2. Enjoy the proofs in COS 326

56

