Proving the Equivalence of Two Modules

COS 326 Andrew Appel Princeton University

slides copyright 2020 David Walker and Andrew Appel permission granted to reuse these slides for non-commercial educational purposes

```
module type SET = 
   sig
     type 'a set
     val empty : 'a set
     val mem : 'a -> 'a set -> bool
 ...
end
```
- When explaining our modules to clients, we would like to explain them in terms of *abstract values*
	- sets, not the lists (or maybe trees) that implement them
- From a client's perspective, operations act on abstract values
- Signature comments, specifications, preconditions and postconditions should be defined in terms of those abstract values
- *How are these abstract values connected to the implementation?*

A more general view

abstract then apply the abstract op == apply concrete op then abstract

Another Viewpoint

A specification is really just another implementation (in this viewpoint)

– but it's often simpler ("more abstract")

We can use similar ideas to compare *any two implementations of the same signature. Just come up with a relation between corresponding values of abstract type.*

We ask: Do operations like f take related arguments to related results?

What is a specification?

It is a logical formula that characterizes the allowed *observable* behavior of the program.

. . . but . . .

for the purposes of this course (and in the design of many real-world program analysis tools) . . .

instead of logical formulae, we will use *programs* to express the behavior we want.

This is only useful if the *specification* programs are simpler and easier to understand than the *implementation* programs.

In that case: What is a specification?

It is really just another implementation

– but it's often simpler ("more abstract")

We can use similar ideas to compare *any two implementations of the same signature. Just come up with a relation between corresponding values of abstract type.*


```
module type S =
  sig
   type t
   val zero : t
  val bump : t \rightarrow tval reveal : t -> int
end
```

```
module M1 : S = struct
  type t = intlet zero = 0let bump n = n + 1let reveal n = nend
```

```
module M2 : S = struct
  type t = int let zero = 2
  let bump n = n + 2let reveal n = n/2 - 1end
```
Consider a client that might use the module:

let x1 = M1.bump (M1.bump (M1.zero) \vert let x2 = M2.bump (M2.bump (M2.zero)

What is the relationship?

is_related $(x1, x2) =$ $x1 = x2/2 - 1$

And it persists: Any sequence of operations produces related results from M1 and M2!


```
module M1 : S = struct
  type t = intlet zero = 0let bump n = n + 1let reveal n = nend
```

```
module M2 : S = struct
  type t = int let zero = 2
  let bump n = n + 2let reveal n = n/2 - 1end
```
Recall: A representation invariant is a property that holds for all values of abs. type:

- if M.y has abstract type t,
	- we want $inv(M.v)$ to be true

Inter-module relations are a lot like representation invariants!

- if $M1.v$ and $M2.v$ have abstract type t,
	- we want is_related($M1.v$, $M2.v$) to be true

It's just a relation between two modules instead of one

Relations may imply the Rep Inv

When defining our relation, we will often do so in a way that implies the representation invariant.

ie: a value in M1 will not be related to any value in M2 unless it satisfies the representation invariant.

module type S = sig type t val zero : t val bump : $t \rightarrow t$ val reveal : t -> int end

```
module M1 : S = struct
  type t = intlet zero = 0let bump n = n + 1let reveal n = nend
```
module $M2 : S =$ struct type $t = int$ let zero = 2 let bump $n = n + 2$ let reveal $n = n/2 - 1$ end

is_related $(x1, x2) =$ $(x1 == x2/2 - 1)$ & & $x1 >= 0$ & & even x2 is_related (x1, x2) implies *x1 >= 0* is_related (x1, x2) implies *even x2 && x2 > 0* rep inv for M1 rep inv for M2

module type S = sig type t val zero : t val bump : t -> t val reveal : t -> int end

```
module M1 : S = struct
  type t = intlet zero = 0let bump n = n + 1let reveal n = nend
```

```
module M2 : S = struct
  type t = int let zero = 2
  let bump n = n + 2let reveal n = n/2 - 1end
```
is_related $(x1, x2) =$ But For Now: $\begin{cases} 15 - 15 \times 100 = 160 \\ 15 - 15 \times 100 = 160 \end{cases}$

```
module type S =
  sig
   type t
   val zero : t
  val bump : t \rightarrow tval reveal : t -> int
end
```

```
module M1 : S = struct
  type t = intlet zero = 0let bump n = n + 1let reveal n = nend
```

```
module M2 : S = struct
  type t = int let zero = 2
  let bump n = n + 2let reveal n = n/2 - 1end
```
Consider zero, which has abstract type t.

Must prove: is related (M1.zero, M2.zero)

```
Equvalent to proving: M1.zero == M2.zero/2 -1
```
Proof:

```
 M1.zero
```
 $== 2/2 - 1$ (math)

 $== M2.$ zero $/2 - 1$ (substitution)

 $== 0$ (substitution)

```
is_related (x1, x2) =x1 == x2/2 - 1
```

```
module type S =
  sig
   type t
   val zero : t
  val bump : t \rightarrow tval reveal : t -> int
end
```

```
module M1 : S =
  struct
 type t = intlet zero = 0let bump n = n + 1let reveal n = nend
```

```
module M2 : S =
  struct
  type t = int let zero = 2
  let bump n = n + 2let reveal n = n/2 - 1end
    isrelated (x1, x2) =x1 = x2/2 - 1
```
Consider bump, which has abstract type t -> t.

Must prove for all v1:int, v2:int

if is_related(v1,v2) then is_related (M1.bump v1, M2.bump v2)

```
Proof:
```
(1) Assume is_related(v1, v2). (2) v1 == v2/2 – 1 (by def)

Next, prove:

 $(M2.bump v2)/2 - 1 = M1.bump v1$

(M2.bump v2)/2 - 1 $== (v2 + 2)/2 - 1$ (eval) $== (v2/2 - 1) + 1$ (math) $== v1 + 1$ (by 2) == M1.bump v1 (eval, reverse)

```
module type S =
  sig
   type t
   val zero : t
  val bump : t \rightarrow tval reveal : t -> int
end
```

```
module M1 : S = struct
 type t = intlet zero = 0let bump n = n + 1let reveal n = nend
```

```
 struct
 type t = int let zero = 2
 let bump n = n + 2let reveal n = n/2 - 1end
   is_related (x1, x2) =x1 = x2/2 - 1
```
module $M2 : S =$

Consider reveal, which has abstract type t -> int.

```
Must prove for all v1:int, v2:int
if is_related(v1,v2) then M1.reveal v1 == M2.reveal v2
```

```
Proof:
```
(1) Assume is_related(v1, v2). (2) v1 == v2/2 – 1 (by def)

Next, prove:

M2. reveal $v2 == M1$. reveal $v1$

M2.reveal v2 $= v^2/2 - 1$ (eval) $== v1$ (by 2) == M1.reveal v1 (eval, reverse)

Summary of Proof Technique

To prove $M1 == M2$ relative to signature S,

- Start by defining a relation "is related":
	- is related (v1, v2) should hold for values with abstract type t when v1 comes from module M1 and v2 comes from module M2
- Extend "is_related" to types other than just abstract t. For example:
	- if $v1$, $v2$ have type int, then they must be exactly the same
		- $-$ ie, we must prove: $v1 == v2$
	- if v1, v2 have type $s1 \rightarrow s2$ then we consider arg1, arg2 such that:
		- $-$ if is related(arg1, arg2) at type s1 then we prove
		- is_related(v1 arg1, v2 arg2) at type s2
	- if v1, v2 have type s option then we must prove:
		- $v1 ==$ None and $v2 ==$ None, or
		- $-$ v1 == Some u1 and v2 == Some u2 and is related(u1, u2) at type s
- For each val v:s in S, prove is_related(M1.v, M2.v) at type s

MODULES WITH DIFFERENT IMPLEMENTATION TYPES

```
module type S =
  sig
   type t
   val zero : t
  val bump : t -> t
  val reveal : t -> int
end
```

```
module M1 : S = struct
  type t = int let zero = 0
  let bump n = n + 1let reveal n = nend
```

```
module M2 : S =
  struct
  type t = int let zero = 2
  let bump n = n + 2let reveal n = n/2 - 1end
```
Different representation types

```
module type S =
  sig
   type t
   val zero : t
  val bump : t -> t
   val reveal : t -> int
end
```

```
module M1 : S = struct
  type t = intlet zero = 0let bump x = x + 1let reveal x = xend
```

```
module M2 : S =
  struct
  type t = Zero \vert S of t
   let zero = Zero
  let bump x = S xlet rec reveal x = match x with
     | Zero -> 0
     | S x -> 1 + reveal x
  end
```
Two modules with abstract type t will be declared equivalent if:

- one can *define a relation between corresponding values of type t*
- one can show that *the relation is preserved by all operations*

If we do indeed show the relation is "preserved" by operations of the module (an idea that depends crucially on the *signature* of the module) then *no client will ever be able to tell the difference between the two modules even though their data structures are implemented by completely different types*!

Different Representation Types

module type S = sig type t val zero : t val bump : $t \rightarrow t$ val reveal : t -> int end

module $M1 : S =$ struct type $t = int$ let zero = 0 let bump $x = x + 1$ let reveal $x = x$ end

module $M2 : S =$ struct type $t =$ Zero \vert S of t let zero = Zero let bump $x = S x$ let rec reveal $x =$ match x with | Zero -> 0 $| S x - 1 +$ reveal x end

is_related $(x1, x2) =$ $x1 = M2$. reveal $x2$

Module Abstraction

John Reynolds, 1935-2013

Discovered the polymorphic lambda calculus (first polymorphic type system).

Developed *Relational Parametricity:* A technique for proving the equivalence of modules.

Summary: Abstraction and Equivalence

Abstraction functions define the relationship between a concrete implementation and the abstract view of the client

– We should prove concrete operations implement abstract ones described to our customers/clients

We prove any two modules are equivalent by

- Defining a relation between values of the modules with abstract type
- We get to assume the relation holds on inputs; prove it on outputs

Rep invariants and "is_related" predicates are called logical relations

Machine-checked proofs with specifications in formal logic

using the Coq proof assistant

Preview of COS 510 "Programming Languages"

David Walker

Princeton University

Prerequisites for COS 510

if you're an undergrad

1. COS 326 Functional Programming

2. Enjoy the proofs in COS 326