COS 316 Precept:
Concurrency

Today's Plan

Background on concurrency

Key Golang mechanisms for developing concurrent
programs (used in assignment 5)

Background: Overview of Concurrency

Sequential programs: Concurrent programs
Single thread of control - Multiple threads of control
Subprograms / tasks - - Subprograms / tasks - may
don't overlap in time - (conceptually) overlap in time
executed one after - (appear to be) executed at
another the same time

Computer with a single processor can have multiple processes at once
OS schedules different processes - giving illusion that multiple processes
are running simultaneously

e Note - parallel architectures can have N processes running simultaneously
on N processors

Let’s give an overview of concurrency in the systems context

We can start off by talking about a normal, sequential program
For these, there is a single thread of execution

The CPU processes these programs one at a time and there is no
concurrency

For concurrent programs, things are different

e There are multiple threads of control

Background: Operating System (Review)

Allows many processes to execute concurrently
Ensures each process’' physical address space does not
overlap

Ensures all processes get fair share of processor time and
resources

Processes can run concurrently and (context) switch

User's perspective: appears that processes run in parallel
although they don't

e Operating systems are responsible for scheduling processes and isolating
them from each other

Background: Context Switch

Control flow changes from one process to another
E.g., switching from processA to processB

Overhead:
Before each switch OS has to save the state (context) of
currently running process and restore it when next time its
execution gets resumed

Background: Threads vs Processes

+ Processes
* Process context switching time is long
(change of virtual address space & other resources)
+ Threads
+ thread is a “lightweight” process
+ thread shares some of the context with other threads in a process, e.g.
*+ Virtual memory
*+ File descriptors
+ Private context for each thread:
+ Stack
+ Data registers
+ Code (PC)
+ Switching between threads is faster because there is less context
- less data that has to be read/written from/to memory

Background: Why Concurrency?

Performance gain
Google search queries
Application throughput
Throughput = amount of work that a computer can do in a given
time period
When one task is waiting (blocking) for I/0 another task can
continue its execution
Model real-world structures
Multiple sensors
Multiple events
Multiple activities

Tradeoffs - Concurrent Programming

- Complex
- Error-prone
- Hard to debug

Example

Jesse

Read b =100
b=b+10
Write b = 110

Bank Account

100

110

120

time

Alex

Read b =110
b=b+10
Write b = 120

Example

Jesse
Read b =100

b=b+10
Write b = 110

Bank Account

100

110

110

time

Alex

Read b =100

b=b+10
Write b = 110

Go and Concurrency

Goroutines

- The sync package - https://golang.org/pkg/sync
.+ sync.Mutex

- sync.Cond

https://golang.org/pkg/sync

Goroutines

« Alightweight thread managed by the Go runtime
* Many goroutines execute within a single OS thread

« One goroutine is created automatically to execute the

main()
« Other goroutines are created using the go keyword
* Order of execution depends on the Go scheduler
« Go takes a process with main thread and schedules
/ switches goroutines within that thread

« Compare
e Sequential Program e Concurrent program
e https://play.golang.org/p/PLeCGtRp20QB e https://play.golang.org/p/sDitCEr 3vX

e Go employs what we call green threads and they call goroutines, which means
that instead of using the operating system’s threading infrastructure, it uses its
own form of threads

e Go has its own scheduler for deciding which goroutine should be running at
any given moment

e Separate go routines are created and executed using the go keyword

https://play.golang.org/p/PLeCGtRp2QB
https://play.golang.org/p/sDitCEr_3vX

Goroutines - Exiting

goroutine exits when code associated with its function
returns
When the main goroutine is complete, all other goroutines
exit, even if they are not finished

goroutines are forced to exit when main goroutine exits

goroutine may not complete its execution because main
completes early

Execution order of goroutines is non-deterministic

e Goroutines have a separate thread of control from the main thread

e They terminate whenever their code is done being run

e However, even if they haven'’t finished running, the termination of the main
thread causes all goroutines to terminate

e |n addition, their execution order is non-deterministic.

e This means that there there’s no way to predict when a goroutine will finish
relative to the main goroutine or any other goroutine

A simple example to show non-determinism

« https://play.golang.org/p/sDitCEr 3vX

« Switch the order of the calls from

go say("world") say("hello")
say("hello") go say("world")

« What happens?

+ How to fix?

We can use Go’s synchronization tools which we will talk about in the next few slides
to address this non-determinism.
Out-of-scope solution with WaitGroup: https://go.dev/play/p/bPVORhgVDWY

https://play.golang.org/p/sDitCEr_3vX

Synchronization

Synchronization is when multiple threads agree on a
timing of an event

Global events whose execution is viewed by all threads,
simultaneously

One goroutine does not know the timing of other
goroutines

Synchronization can introduce some global events that
every thread sees at the same time

Synchronization and Go

type Cond
Func (*xCond) Signal()
func (*xCond) Broadcast()
func (xCond) Wait()

type Mutex
func (m *Mutex) Lock()
func (m *Mutex) Unlock()

Channels
. See COS 418

Mutex (Mutual Exclusion)

Sharing variables between goroutines (concurrently) can
cause problems

Two goroutines writing to the same shared variable can
interfere with each other

Function/goroutine is said to be concurrency-safe if can be
executed concurrently with other goroutines without
interfering improperly with them

e.g., it will not alter variables in other goroutines in some
unexpected/unintended/unsafe way

Sync.Mutex

A mutex ensures mutual exclusion
Uses a binary semaphore
+ Ifflag is up — shared variable is in use by somebody
Only one goroutine can write into variable at a time
Once goroutine is done with using shared variable it has to put the flag
down
+ ifflag is down — shared variable is available
If another goroutine see that flag is down it knows it can use the shared
variable but first it has to put the flag up

A semaphore ~= a signal

Back to our example

Jesse — Bank Account [+ Alex

Read b = 100 100

Read b =
b=b+10
Write b = 110 110

=110 }
b=b+10
120 Write b = 120

time

func Deposit(amount) {

lock balancelLock

read balance

balance = balance + amount
write balance

unlock balancelLock

CRITICAL
SECTION

Sync.Mutex

Lock() + Create a Mutex
+ Puts the flag up (if none of other goroutines
has already put the flag up) var mut sync.Mutex

+ If second goroutine also calls Lock ()it will be
blocked, it has to wait until first goroutine

releases the lock « To lock a critical section
+ Note - any number of goroutines (not just
two) competing to Lock () mut.Lock()
Unlock()
« Puts the flag down * To unlock a critical section

* When Unlock() is called, a blocked Lock ()

can proceed mut.Unlock()

In general: put Lock () at the beginning of the
critical section and call Unlock() at the end of it;
ensures that only one goroutine will be in critical
section region

Mutex Exercise

Consider:

var i int = 0

var wg sync.WaitGroup

func inc() {
i=1+1
wg.Done ()

}

func main() {
wg.Add(2)
go inc()
go inc()
wg.Wait()
fmt.Println(i)

* Run the program
https://play.golang.org/p/hNevYkKDp30

* Is it concurrency-safe?

* Use Lock () and Unlock() to make these
programs concurrency-safe

Solution: https://go.dev/play/p/HnJIXAB7slb

https://play.golang.org/p/hNevYkKDp30
https://go.dev/play/p/HnJIXA67slb

Mutex Exercise - Bank Account

Jesse — Bank Account [+ Alex
Read b = 100 100
Read b =
b=b+10
Write b = 110 110
=110
b=b+10
120 Write b = 120

- Make this code concurrency-safe

https://go.dev/play/p/VboCb850tn0

Solution: https://go.dev/play/p/Q12qgkDAajCK

https://go.dev/play/p/VboCb85otn0
https://go.dev/play/p/Q12qkDAajCK

Interesting Example
Consider:

var mu sync.Mutex
func funcA() {

* Run the program
https://play.golang.org/p/c2Qgo-W_4mP

mu. Lock()
funcB() * What happens?
mu.Unlock()

}

func funcB() {
mu.Lock()
fmt.Println("Hello, World")
mu.Unlock ()

}

func main() {
funcA()

}

This is a deadlock; we have func A holding the lock that func B is waiting for, but func
A calls func B so A can’t terminate before B, hence nothing terminates and both funcs
wait endlessly

https://play.golang.org/p/c2Qgo-W_4mP

Condition Variables - sync.

sync. Cond type - provides an efficient way to send
notifications among goroutines

sync.Cond value holds a sync. Locker field with name L
- field value is of type *sync.Mutex or xsync.RWMutex
o Eg:
m cond := sync.NewCond(&sync.Mutex{})
m cond.L.Lock()
m cond.L.UnLock()

sync.Cond value holds a FIFO queue of waiting
goroutines

commonly used to allow threads to wait on a condition to
be true: consumers wait until a producer signals that
something happened

Cond

Mutex or
RWMutex

Jontboom

—

https://golang.org/pkg/sync/#Cond
https://golang.org/pkg/sync/#Locker

Condition Variables - L.Lock(), L.Unlock(),
Wait(), Broadcast(), Signal()

e cond :=

cond.L.Lock(
cond.Wait()

sync.NewCond (&sync.Mutex{})

-_—

waiting goroutine queue

Unblock the head goroutine in
(and remove them from) the

e cond.Signal() _— waiting goroutine queue

Call L.Lock() before
Wait()

Insert calling goroutine in
queue and block (wait)
Calls L.Unlock()

Blocked routines go back to
running state

Invokes cond.L.Lock() (in the
resumed cond.Wait() call) to
try to acquire and hold the
lock cond.L again

cond.Wait() call exits after the
cond.L.Lock() call returns

25

A Basic Example:

CONDITION VARIABLE: WAIT AND SIGNAL

func (g *Queue) Get() Item { func (q *Queue) Put(item Item) {
g.mu.Lock() g.mu.Lock()
defer g.mu.Unlock() defer g.mu.Unlock()
for len(qg.items) == 0 { g.items = append(q.items, item)
q.itemAdded.Wait() q.itemAdded.Signal()

}

item := q.items[0]
q.items = q.items[1:]
return item

t atomically

Signal locks the mutex

CONDITION VARIABLES

- The two basic operations on condition variables are Wait, and Signal.

- Wait atomically unlocks the mutex and suspends the calling goroutine.

- Signal wakes up a waiting goroutine, which relocks the mutex before
proceeding.

- Inour queue, we can use Wait to block on the availability of enqueued items,
and Signal to indicate when another item has been added.

Slide from here:
https://drive.google.com/file/d/1nPdvhBOPutEJzdCgq5ms6UI58dpS0fcAN/view (also
linked here on go’s sync documentation https://pkg.go.dev/sync#Cond)

https://drive.google.com/file/d/1nPdvhB0PutEJzdCq5ms6UI58dp50fcAN/view
https://pkg.go.dev/sync#Cond

sync.Cond - Always Check the Condition!

e Why is this loop here?

e cond.Wait() does not guarantee
the condition holds when it returns

e The condition could have been made
false again while the goroutine was
waiting to run

e Always check the condition, and keep
waiting if it does not hold

checkCondition := func() bool {
// Check the condition
}

for !checkCondition() {
cond.Wait()

}
cond.L.Unlock()

