
COS 316 Precept #5
Testing & Benchmarking

1

TCP is about streams

● TCP is a stream-oriented transport layer protocol
● This means that it is meant to send long streams of data, even if that data has

to be split across multiple packets
● On this slide, we’ve included a figure of the network layers that were

discussed in lecture
● What we want you to take away from this figure is the following:

○ This figure represents two hosts that are communicating over a
network connection

○ When data is sent from one host to another, you can think of the data
as going down the layers on the sender, then upon receipt, going back
up the through the layers on the receiving side

○ Each host has code that implements each layer of the network stack
○ They each have code that handles the IP protocol, TCP or UDP, HTTP,

etc.
○ As data makes its way down through the network layers, the code on

the sender appends layer-specific information to the packet and
continues to pass it down

○ This layer-specific information is called a header and there’s a different
header for each layer

○ On the receiver side, the code at each layer will consume the layer
specific information that is on the received packet and act on it

The TCP header

● Let’s take a look at the TCP header
● We see the source and destination port numbers
● Remember that those are used by the hosts to multiplex their IP connections
● Below that, we have the 32-bit sequence number. Remember that TCP is for

transmitting long byte-streams. The sequence number on each packet tells the
receiver that the first byte of the data contained in the packet starts at offset
“sequence number” of the whole data stream.

○ For example, if the first data packet’s seqno is m, and assume that
each subsequent data packet contains 10 bytes of (non-TCP-header)
data,

○ then the 4th, 5th, 10th packet sent by the client would have seq
numbers m+40, m+50, and m+100 respectively.

● The acknowledgment number is the next sequence number that the sender
of this packet expects from the receiver (detailed in next example)

● Most of the rest of this we can gloss over, but let’s point out a few things.
○ In the fourth row, there are several vertical rectangles; these are flags
○ For the next slide, we care about the SYN and ACK flags, and we’ll

elaborate on them there
● For now, let’s move on to how TCP connections are initiated

3-way handshake

● In order to initiate a new TCP connection, something called a 3-way
handshake takes place

● Usually, a new TCP connection is initiated by a client that is attempting to
connect to a server, so for the rest of this discussion, we’ll assume that is the
case

● For clarity, TCP can be used between any two hosts, regardless of the client
and server language that we use. It just happens that this is both a useful
teaching tool and the most common way that TCP connections are established

● Also, it’s called a 3-way handshake but in reality it’s just 3 messages. Not sure
why “way” is used instead of “message”, but let’s just go with it

● The first part of the handshake is a message from the client to the server
● It is a SYN (synchronize) packet; this means that the SYN flag in the TCP

header is set so that the receiver knows that this is an attempt at a new
connection

● Notice in the diagram that it says “seq = m”
● That is the sequence number for the packet
● Remember that the sequence number is essentially a byte offset and it tells

the receiver of the packet that the start of the data in this packet is byte m of
the stream

● When the server receives the SYN packet, it will respond with a SYN-ACK
packet

● This is a packet with both the SYN and ACK flags set
● Looking at the figure, you’ll notice that on the server side, it says seq = n (the

sequence number used by the server) and ack = m + 1 (the server

● acknowledges the client’s sequence number m, and expects the next one to
be m+1)

● Each host in a TCP connection has its own sequence number that it keeps
track of

● The ack number is always the sequence number that the receiver expects to
receive next

● We’ll walk through an example later so that things are more clear
● Finally, the client responds with a final ACK packet and the connection is

established
● These two hosts can continue to communicate indefinitely until one of them

shuts the connection down!

Example

● Here’s a screenshot of some network traffic results from wireshark; you can
see an example of what the establishment of a TCP connection and data
exchange looks like

● We use a terminal to request a webpage from neverssl.com
● Each of these rows represents a packet that my machine has either sent or

received
● The first three packets are the 3-way handshake
● The next packet is my terminal sending an HTTP Get request
● The next few packets are the web page being sent back in chunks, followed

by the HTTP Response with a status message
● And finally, the teardown of the TCP connection is started by the host

Overview

• What is testing?
• evaluation of software against user requirements & systems specs
• identify defects in software - show the presence of bugs, but not their absence

• What is benchmarking?
• evaluation of system performance - time (CPU vs wall clock), memory, etc.

What is Testing?

● Evaluation of software to ensure it meets user requirements and system
specifications.

● Identify defects in the software, ensuring that bugs are detected. It can show
the presence of bugs, but it's important to note that it cannot guarantee the
absence of bugs.

What is Benchmarking?

● Benchmarking is the process of evaluating system performance by measuring
various parameters.

● Common metrics include processing time such as CPU time, wall-clock time
(real world time) and resource usage like memory.

● Difference of CPU time and wall-clock time?
a. CPU time only measures the time CPU is used to process
b. Wall-clock time is the whole time user should wait. It can include some

other time such as I/O
c. Question? Is it possible that CPU time is longer than wall clock

i. YES! Multi-threaded Systems!

Testing - Basic Approach in Go
• Source files and associated test files are placed in the

same package/folder

• The name of the test file for any given source file is
_test.go

• E.g., router.go and router_test.go

• Import “testing”

• Test functions need to have the “Test” prefix, and the next
character in the function name should be capitalized

Testing - Exercises

> cd precept4/mysort

run test framework

> go test -v

fix the bug and demonstrate tests pass

The bug is in the mysort_test.go. The MergeSort function has a return value but it’s
verifying the old list instead of the returned list.
slice = MergeSort(slice)

Benchmarking - Basic Approach in Go
• Benchmarks also reside in the _test.go files

• Import “testing”

• Benchmark functions need to have the “Benchmark” prefix,
and the next character in the function name should be
capitalized

● Benchmarks are written within _test.go files, the same files where you define
test functions.

● Also need to import “testing”
● Recall that the test functions have “Test” prefix. Benchmark functions have

“Benchmark” prefix.

Benchmark - Exercises

● How to eliminate certain code in benchmarks?
○ b.ResetTimer(), b.StartTimer(), b.StopTimer()

● How to benchmark specific functions:
○ go test --bench=Fib20

● How to show memory allocations?
○ go test --bench=. --benchmem

or
○ b.ReportAllocs()

To exclude certain parts of code (like setup tasks that shouldn't be measured in the
benchmark), use:

● b.ResetTimer(): ResetTimer zeroes the elapsed benchmark time and
memory allocation counters and deletes user-reported metrics. It does not
affect whether the timer is running.

● b.StartTimer(): StartTimer starts timing a test. This function is called
automatically before a benchmark starts, but it can also be used to resume
timing after a call to B.StopTimer

● b.StopTimer(): StopTimer stops timing a test. This can be used to pause the
timer while performing complex initialization that you don't want to measure.

benchmark specific functions by running by specify a function as an argument.

You can also show memory allocations by specify “benchmem”
go test --bench=. --benchmem This command means to run all benchmarks

and includes memory allocation statistics.

https://pkg.go.dev/testing#B.StopTimer

Benchmark - Exercises

> cd precepts/precept4/fib

run benchmark framework

> go test --bench=.

will run for 10 seconds

> go test --bench=. --benchtime=10s

will run experiment 10 times

> go test --bench=. --count=10

- –benchtime=10s means that for each benchmark, go will run the benchmark
for a minimum of 10 seconds.

- If running the benchmark takes less than 10 seconds, golang will run with
multiple iterations to reach 10s. If longer than 10s, golang will not terminate it
but wait it to finish with only one iteration.

Testing and Benchmark - Exercises

> cd precepts/precept4/stack

develop and run tests

develop and run benchmarks

Questions:
1. Does your testing framework pass all tests?
2. Do your benchmark(s) demonstrate improved performance?

The bug is in the function Pop(); the s.n = s.n - 1 line is commented out but is
needed.

