LET'S GET GO-ING

What is Go?

Variables,

v loops, and
IODAY SAG[NDA functions in Go
Just enough Go to 1 .

get started on
Assignment 1.

documentation

WHY LEARN GO!

designed for large, distributed

WHY LEARN GO!

O 1S a programming language
designed for large, distributed
systems.

‘

idely used in industry.

WHY LEARN GO!

O 1S a programming language
esigned for large, distributed
systems.

idely used in industry.

Features native, efficient
concurrency primitives (i.e.,
oroutines and channels).

systems.

Widely used din dindustry.

Features native, efficient
concurrency primitives (i.e.]

Worth mentioning Go is also used in COS 418.

Okay, let's write our first program

VARTABLES

https://go.dev/play

VARTABLES

package main

func main() {

}

VARTABLES

package main

func main() {
var a int = 3

}

VARTABLES

package main

func main() {
var a int = 3

}

ariable types come
after variable names

VARTABLES

package main

func main() {
var a int = 3
var b = 2

}

ariable types come
after variable names

BB
after variable names

package main .
ariable types can be

func main() { omitted and inferred
var a int = 3

var b = 2

}

BB
after variable names

package main .
ariable types can be
func main() { omitted and inferred
var a int = 3
var b = 2
c : =1
}

BB
after variable names

package main

ariable types can be
func main() { omitted and inferred

var a int = 3

ZaLbf 2 A shorthand fo
+ . 'varc="is'c:='

V ARTABLES ariable types come
after variable names
package main .
ariable types can be

func main() { omitted and inferred

var a int = 3

‘C’afzblz 2 A shorthand fo

var d int 'var c =' is'c:='

VARTABLES

package main

func main() {
var a int = 3
var b = 2
c :=1
var d int

ariable types come
after variable names

ariable types can be
omitted and inferred

A shorthand fo
'varc =" is'c:='

Can choose to accept
default value (i.e., O)

BB
after variable names
package main

ariable types can be
func main() { omitted and inferred

var a int = 3

‘C’afzblz 2 A shorthand fo
var d -int 'Val’ C =' iS 'C :='
var e, f int = -1, -2

} Can choose to accept
default value (i.e., O)

VARIAB [ES ariable types come
after variable names

package main .
ariable types can be

func main() { omitted and inferred
var a int = 3
var b =2 A shorthand fo
var d int 'Val’ C =' iS 'C :='
var e, f int = -1, -2
} Can choose to accept

default value (i.e., O)

Can declare and init.
multiple vars in 1line

package main

func mai

VARTABLES

ariable types come
after variable names

ariable types can be

mittad and inferred
var

var

Okay, looks good!
Let's run our code.

var
var

Can declare and init.
multiple vars in 1line

VARTABLES

package main

ariable types come
after variable names
ariable types can be
func mai cmittad and inforred

var
var

Okay, looks good!
Let's run our code.

> go run main.go

Can declare and init.
multiple vars in 1line

var
var

VARTABLES

package main

ariable types come
after variable names

./main. :4:7: declared and not used
./main. :5:7: declared and not used
./main. :6:3: declared and not used
./main. :7:7: declared and not used
./main. :8:7: declared and not used
./main. :8:10: £ declared and not used

Compiler says nope!

\A CA U vV CALU

Can declare and init.
multiple vars in 1line

VARTABLES

package main

ariable types come
after variable names
ariable types can be
mittad and inferred

func mai
var
var

var
var

unused variables, so
let's print them out

'O)

Can declare and init.
multiple vars in 1line

VARIAB [ES ariable types come
after variable names

package main .
ariable types can be

func main() { omitted and inferred
var a 1nt = 3
‘C’afzblz 2 A shorthand fo
var d -int 'Val’ C =' iS 'C :='
var e, f int = -1, -2
} Can choose to accept

default value (i.e., O)

Can declare and init.
multiple vars in 1line

VARIAB [ES ariable types come
after variable names

package main .
ariable types can be

import "fmt" omitted and inferred
func main() { A shorthand fo

var a int = 3 \ . .

var b = 2 varc='is'c:=

c :=1

var d int Can choose to accept
var e, fint = -1, -2 Bdefault value (i.e., 0)

Can declare and init.
multiple vars in 1line

—
after variable names
omitted and inferred

package main

import "fmt"
func main() { A shorthand fo
var a int = 3) C e
var b = 2 varc= IS C:=
c =1
var d int Can choose to accept

var e, f int = -1, -2 Bdefault value (i.e., O)

) fmt.Printin(a, b, <) Bran declare and init.
multiple vars in 1line

—
after variable names
omitted and inferred

package main

import "fmt"
func main() { A shorthand fo
var a int = 3) C e
var b = 2 varc= IS C:=
c =1
var d int Can choose to accept

var e, f int = -1, -2 Bdefault value (i.e., O)

fmt.Println(a, b, c)
fmt.Printin(d, e. f) Can declare and init.
} multiple vars in 1line

Let's see this in action!

PLAY TIME!

||Go|| to

go.dev/play and try

out some variable
declarations.

https://go.dev/play

PLAY TIME!

||Go|| to

go.dev/play and try

out some variable
declarations.

Here are some -ideas.

https://go.dev/play

ith different types
on the same line?

PLAY TIME!

||Go|| to

go.dev/play and try

out some variable
declarations.

Here are some -ideas.

https://go.dev/play

Can you declare

ith different types
on the same line?

Can you infer the P AA '

types of variables LAY TI [-
hen declaring more "Go" to

than one on a line? go.dev/play and try

out some variable
declarations.

Here are some -ideas.

https://go.dev/play

Can you declare

ith different types
on the same line?

ol e LAY TIME!

hen declaring more "Go" to
than one on a line? go.dev/play and try
out some variable
declarations.

Here are some -ideas.

Yes, if you instantiate the variables without the type
Yes
It gives space-separated values

https://go.dev/play

package main

func main() {

}

package main
import "fmt"

func main() {
for i := 1; i <= 3; i++ {
fmt.Println(i)
+
+

package main
import "fmt"

func main() {
for i := 1; i <= 3; i++ {
fmt.Println(i)
}

} Must use { }, even
or 1-line loops

package main
import "fmt"
func main() {

for i := 1; i <= 3; i++ {
fmt.Println(i)

}
jc 1= 4 . Must use { }, even
or i <= 10 ;
fmt.Println(i) or 1-line loops
it++
}

}

package main
import "fmt"
func main() {
for i := 1; i <= 3; i++ {

fmt.Println(i)
+

jc =4 . Must use { }, even
or i <= 10 ;
fmt.Println(i) or 1-line loops

} B No such thing as
I 'while' loops in Go

package main
import "fmt"

func main() {

for i := 1; i <= 33 i++ {
fmt.Println(i)
}
i=4 Must use { }, even

for i <= 10 {
fmt.Println(i)
it++

or 1-line loops

3 No such thing as
for { 'while' loops in Go
fmt.Println("done!")
break

}
}

package main
import "fmt"

func main() {
for i := 1; i <= 3; i++ {
fmt.Println(i)

+

i := 4

for i <= 10 {
fmt.Println(i)
i++ .

3 No such thing as

for { 'while' loops in Go
fmt.Println("done!")

) break Can use 'break’
) and ‘continue’

Must use { }, even

or 1-line loops

Let's try it ourselves

LET'S GET
LO0PY

Navigate to

go.dev/play and

write a few Go
loops.

https://go.dev/play

Does the scoping of
the index variable 1in
a Go 'for' loop extend

beyond the loop? lﬂ'S GH
L00PY

Navigate to

go.dev/play and

write a few Go
loops.

https://go.dev/play

Does the scoping of
the index variable 1n
a Go 'for' loop extend

beyond the loop? lﬂ'S (1“

Can you skip the
conditional part in a lOOPY

"for' loop but still
use the 1init and post g0.dev/play and

statements? write a few Go
loops.

Navigate to

https://go.dev/play

wn

If the variable is declared as part of the loop invocation, then its scope doesn’t

Does the scoping of
the index variable 1n

neyond the loonzl | LET'S GET

Can you skip the
conditional part in a OOPY
"for' loop but still _
.. Navigate to
use the 1init and post go.dev/play and
write a few Go
loops.

'labeled breaks' that
let you choose which
loop to leave?

extend beyond the loop.

Yes
Yes

https://go.dev/play

FUNCTIONS

FUNCTIONS

func f(a int, b 1int) int {
return a + b

}

E U N (HO NS A function's return

func f(a int, b int) int { [typels listed afte
return a + b Its args
}

E U N (HO NS A fun.cti.on's return

func f(a int, b 1int) int {
return a + b

}

func g(a, b int) int {
return a *x b

}

E U N (HO NS A fun.cti.on's return

func f(a int, b 1int) int {
return a + b

}

func g(a, b int) int {
return a *x b

}

E U N (HO NS A fun.cti.on's return

func f(a int, b 1int) int {
return a + b

}

func g(a, b int) int {
return a *x b

}

func h(a, b int) (int,int) {
return f(a, b), g(a, b)
}

f U N (HO NS A fun.cti.on's return

func f(a int, b 1int) int {
return a + b

}

func g(a, b int) int {
return a *x b

}

func h(a, b int) (int,int) {
return f(a, b), g(a, b)
}

f U N (HO NS A fun.cti.on's return

func f(a int, b 1int) int {
return a + b

}

func g(a, b int) int {
return a *x b

}

func h(a, b int) (int,int) {
return f(a, b), g(a, b)
}

func main() {
a, b := h(1, 2)
_, € = h(3, 4)

}

f U N (HO NS A fun.cti.on's return

func f(a int, b 1int) int {
return a + b

}

func g(a, b int) int {
return a *x b

}
func h(a, b int) (int,int) {

return f(a, b), g(a, b)
}

func main() {

a, b := h(1, 2) "_'throws away a
_» ¢ = h(3, 4) return value

}

Last programming exercise!

-_—

wn

No
Yes
No

Does Go allow you to

use '_' to dgnore all

the return values of a (]0
function?

can you use recursion | [UNCTIONS

with a function that Lot
. et's get back to
returns multiple go.dev/play and

write a few
programs using
functions 1in Go.

Does Go require a
return value for each

http://go.dev/play

(G0 STANDARD LTBRARY

ALl Go programs have access to

to a massive standard library of
packages. (See)

http://pkg.go.dev/std

(G0 STANDARD LTBRARY

Ll Go programs have access to
to a massive standard library of
ackages. (See

his collection of officially
supported packages is one of the
reasons Go is a useful language

for systems programmers.

http://pkg.go.dev/std

READING THE DOCUMENTATION

Navigating the documentation is

READING THE DOCUMENTATION

Navigating the documentation is
ard.

here's a lot of it and you'll
be learning about the language
as you read 1it.

READING THE DOCUMENTATION

avigating the documentation is

ard.

here's a lot of it and you'll
e learning about the language
as you read 1it.

xpect to spend some time
pouring over it.

EXTERNAL SOURCES

Googling is allowed, even

encouraged, in this course. You

may use any online resource.

EXTERNAL SOURCES

Googling is allowed, even
encouraged, in this course. You
use any online resource.

f you base a significant
portion of your code on it, cite
it in a comment in your code.

EXTERNAL SOURCES

Googling is allowed, even
encouraged, in this course. You
use any online resource.

f you base a significant
ortion of your code on it, cite
it in a comment in your code.

Search for “golang” instead.

Let's see the docs

. DOCHUNT

Can you experiment Navigate to

using the provided e
Use

go.dev/play

https://pkg.go.dev
http://go.dev/play

QUESTIONS!

Please 't o a

ADDITIONAL RESOURCES

https://go.dev
https://go.dev/doc/tutorial/getting-started
http://go.dev/play
https://gobyexample.com
https://www.youtube.com/watch?v=YS4e4q9oBaU
https://www.youtube.com/watch?v=YS4e4q9oBaU

