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Edge Cache with Different Algos

• Clairvoyant (Bélády) shows we can do much better!
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Infinite Cache
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Research From Princeton!
Learning Relaxed Belady for 
Content Distribution Network 
Caching.

Zhenyu Song, Daniel S. Berger, 
Kai Li, and Wyatt Lloyd.

In 17th USENIX Symposium on 
Networked Systems Design and 
Implementation (NSDI 20), February 
2020.



Edge 
cache

CDN Caching Goal: Minimize WAN Traffic 
Requests

Miss
Hit

User

Requests

Wide Area Network (WAN)
traffic is expensive

Key metric hit ratio
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Caching Remains Challenging
Heuristic-based algorithms (1965–): LRU, LFU, GDSF, ARC, ...
● Work well for some workloads, but work poorly for other

ML-based adaptation of heuristics (2017–): UCB, LeCAR, ...
● Also work well for some workloads, but poorly for others

The Belady algorithm (1966)
● Offline optimal: requires future knowledge
● Large gap in miss ratio between state-of-the-art and Belady:
● 20–40% on production traces
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Introducing Learning Relaxed Belady (LRB)

New approach: mimic Belady using machine learning
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● Machine-Learning-for-Systems (ML-for-Systems)
○ Enabling technologies

○ When does it make sense?



General Overview of our Approach
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Challenge 1: Past Information
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More data improves training 
but increases memory
overhead



Challenge 2: Generate Online Training Data
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Challenge 3: ML Architecture
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Large design space: 
features, model, prediction 
target, loss function



Challenge 4: Eviction Candidates

R R R R R R·····
····

Now

Cache

R
Past information

ML 
architecture

Training data

Eviction 
candidates

How to select evict candidates?

What past information to use? 

Generate online training data?

What ML architecture to select?
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Solution: Relaxed Belady Algorithm

How to select evict candidates?

What past information to use? 

Generate online training data?

What ML architecture to select?
Relaxed Belady algorithm 
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Challenge: Hard to Mimic Belady Algorithm

Mimicking exact Belady is impractical 
● Need predictions for all objects → prohibitive computational cost
● Need exact prediction of next access → further prediction are 

harder

Belady: evict object with next access farthest in the future
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Introducing the Relaxed Belady Algorithm

Observation:  many objects are good candidates for eviction

Relaxed Belady evicts a random object beyond boundary
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● Do not need predictions for all objects → reasonable computation
● No need to differentiate beyond boundary → simplifies the 

prediction



Challenge 1: Past Information
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Track Objects within a Sliding Memory 
Window

Per object 
features
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Sliding memory window mimics Belady boundary 

Only track objects within memory window
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Window size is LRB’s main 
hyperparameter



Challenge 2: Training Data
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Sample Training Data & Label on Access or Boundary

Per object 
features
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Challenge 3: ML Architecture

Large potential design 
space
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Solution 3: Feature & Model Selection

Gradient boosting decision trees

Lightweight & high good decision ratio

Training ~300 ms, prediction ~30 us

Features
Object size
Object type
Inter-request distances
(recency)

Exponential decay counters
(long-term frequencies)

Use good decision ratio to evaluate new designs
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Challenge 4: Eviction Candidates
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Solution 4: Random Sampling for Eviction

Can mimic relaxed Belady if we can
find 1 object beyond the boundary

k=64 candidates; more does not improve 
good decision ratio
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Label

Labeled 
dataset

Sample

Unlabeled dataset

Learning Relaxed Belady
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● Simulator implementation
○ LRB + 14 other algorithms

● Prototype implementation
○ C++ on top of production system (Apache Traffic Server)
○ Many optimizations

Implementation
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● Q1: Learning Relaxed Belady (LRB) traffic reduction vs state-of-the-art

● Q2: overhead of LRB vs CDN production system

● Traces: 6 production traces from 3 CDNs

● Hyperparameter (memory window/model/...) tuned on 20% of trace

Evaluation Setup
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LRB Reduces WAN Traffic
20% traffic reduction over B-LRU
10% reduction over the best SOA

Wikipedia trace

Industry 
standard
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CDN-B1 CDN-B3CDN-B2

LRB Consistently Improves on the State of the Art

Wikipedia CDN-A1 CDN-A2
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LRB Overhead Is Modest 

Throughput: 11.7 Gbps vs 11.7 Gbps (unmodified)

Memory overhead=1‒3% cache size

Peak CPU: 16% vs 9% (unmodified) 
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Edge 
cache

Requests
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Conclusion

● LRB reduces WAN traffic with modest overhead

● ML-for-systems generally promising to replace heuristics

● Key insight: relaxed Belady

→Simplifies machine learning & reduces system overhead
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Systems Classes in the Spring
• COS 417 – Operating Systems – T/Th 11-1220
• Mae Milano and Amit Levy
• Previously 318, a revamped OS class!

• COS 418 – Distributed Systems – MW 10-1050
• Mike Freedman & Wyatt Lloyd

• COS 432 – Information Security – T/Th 11-1220
• Prateek Mittal
• Primarily listed as ECE 432

• COS IW 11 – IaaS Systems for Business – M 11-1220
• Corey Sanders ’04 (Recently retired CVP from Microsoft)




