
Learning Relaxed Belady
for CDN Caching

COS 316: Principles of Computer System Design
Lecture 16

Wyatt Lloyd & Rob Fish

Edge Cache with Different Algos

• Clairvoyant (Bélády) shows we can do much better!

��

��

��

��

��

��

� �� ��

�
���
��
���

����������

�����������
�����
���

���
����

Infinite Cache

3

Research From Princeton!
Learning Relaxed Belady for
Content Distribution Network
Caching.

Zhenyu Song, Daniel S. Berger,
Kai Li, and Wyatt Lloyd.

In 17th USENIX Symposium on
Networked Systems Design and
Implementation (NSDI 20), February
2020.

Edge
cache

CDN Caching Goal: Minimize WAN Traffic
Requests

Miss
Hit

User

Requests

Wide Area Network (WAN)
traffic is expensive

Key metric hit ratio

4

Caching Remains Challenging
Heuristic-based algorithms (1965–): LRU, LFU, GDSF, ARC, ...
● Work well for some workloads, but work poorly for other

ML-based adaptation of heuristics (2017–): UCB, LeCAR, ...
● Also work well for some workloads, but poorly for others

The Belady algorithm (1966)
● Offline optimal: requires future knowledge
● Large gap in miss ratio between state-of-the-art and Belady:
● 20–40% on production traces

5

Introducing Learning Relaxed Belady (LRB)

New approach: mimic Belady using machine learning

6

● Machine-Learning-for-Systems (ML-for-Systems)
○ Enabling technologies

○ When does it make sense?

General Overview of our Approach

R R R R R R·····
····

Now

Cache

R
Past information

ML
architecture

Training data

Eviction
candidates

7

Challenge 1: Past Information

R R R R R R·····
····

Now

Cache

R
What past information to use?

Past information

ML
architecture

Training data

Eviction
candidates

8

More data improves training
but increases memory
overhead

Challenge 2: Generate Online Training Data

R R R R R R·····
····

Now

Cache

R
What past information to use?

Generate online training data?

Past information

ML
architecture

Training data

Eviction
candidates

9

Challenge 3: ML Architecture

R R R R R R·····
····

Now

Cache

R
What past information to use?

Generate online training data?

What ML architecture to select?

Past information

ML
architecture

Training data

Eviction
candidates

10

Large design space:
features, model, prediction
target, loss function

Challenge 4: Eviction Candidates

R R R R R R·····
····

Now

Cache

R
Past information

ML
architecture

Training data

Eviction
candidates

How to select evict candidates?

What past information to use?

Generate online training data?

What ML architecture to select?

11

Solution: Relaxed Belady Algorithm

How to select evict candidates?

What past information to use?

Generate online training data?

What ML architecture to select?
Relaxed Belady algorithm

16

Challenge: Hard to Mimic Belady Algorithm

Mimicking exact Belady is impractical
● Need predictions for all objects → prohibitive computational cost
● Need exact prediction of next access → further prediction are

harder

Belady: evict object with next access farthest in the future

17

Cache
(now)

A
······

B

C D

Time to next request

D B A C······ ······

Evict

Introducing the Relaxed Belady Algorithm

Observation: many objects are good candidates for eviction

Relaxed Belady evicts a random object beyond boundary

18

Cache
(now)

A
······

B

C D
Time to next request

D B A C······ ······

EvictBelady boundary

● Do not need predictions for all objects → reasonable computation
● No need to differentiate beyond boundary → simplifies the

prediction

Challenge 1: Past Information

R R R R R R·····
····

ML
architecture

Training data

Eviction
candidates

More data improves training
but increases memory
overhead

Past information
What past information to use? Now

Cache

R

22

Track Objects within a Sliding Memory
Window

Per object
features

R R R R R R·····
····

Now
R

Sliding memory window mimics Belady boundary

Only track objects within memory window

23

Window size is LRB’s main
hyperparameter

Challenge 2: Training Data

R R R R R R·····
····

Now

Cache

R
What past information to use?

Generate online training data?

Past information

ML
architecture

Training data

Eviction
candidates

24

Sample Training Data & Label on Access or Boundary

Per object
features

R R R R R R·····
····

Now
R

Sliding memory window

Sample

Unlabeled training data

Past memory
window

Access

Labeled training data

25

Challenge 3: ML Architecture

Large potential design
space

R R R R R R·····
····

Now

Cache

R
What past information to use?

Generate online training data?

What ML architecture to select?

Past information

ML
architecture

Training data

Eviction
candidate

s

26

Solution 3: Feature & Model Selection

Gradient boosting decision trees

Lightweight & high good decision ratio

Training ~300 ms, prediction ~30 us

Features
Object size
Object type
Inter-request distances
(recency)

Exponential decay counters
(long-term frequencies)

Use good decision ratio to evaluate new designs

27

Challenge 4: Eviction Candidates

R R R R R R·····
····

Now

Cache

R
Past information

ML
architecture

Training data

Eviction
candidates

How to select evict candidates?

What past information to use?

Generate online training data?

What ML architecture to select?

28

Solution 4: Random Sampling for Eviction

Can mimic relaxed Belady if we can
find 1 object beyond the boundary

k=64 candidates; more does not improve
good decision ratio

R R R R R R·····
····

Now

Cache

R
Past information

Random k
candidates

29

Label

Labeled
dataset

Sample

Unlabeled dataset

Learning Relaxed Belady

30

Now

Cache

RR R R R R R······

Memory window

RR

Train

Model Eviction
Candidates

···

Sample

Predict

Evict

● Simulator implementation
○ LRB + 14 other algorithms

● Prototype implementation
○ C++ on top of production system (Apache Traffic Server)
○ Many optimizations

Implementation

31

● Q1: Learning Relaxed Belady (LRB) traffic reduction vs state-of-the-art

● Q2: overhead of LRB vs CDN production system

● Traces: 6 production traces from 3 CDNs

● Hyperparameter (memory window/model/...) tuned on 20% of trace

Evaluation Setup

32

LRB Reduces WAN Traffic
20% traffic reduction over B-LRU
10% reduction over the best SOA

Wikipedia trace

Industry
standard

33

CDN-B1 CDN-B3CDN-B2

LRB Consistently Improves on the State of the Art

Wikipedia CDN-A1 CDN-A2

34

LRB Overhead Is Modest

Throughput: 11.7 Gbps vs 11.7 Gbps (unmodified)

Memory overhead=1‒3% cache size

Peak CPU: 16% vs 9% (unmodified)

35

Edge
cache

Requests

User

Conclusion

● LRB reduces WAN traffic with modest overhead

● ML-for-systems generally promising to replace heuristics

● Key insight: relaxed Belady

→Simplifies machine learning & reduces system overhead

36

Systems Classes in the Spring
• COS 417 – Operating Systems – T/Th 11-1220
• Mae Milano and Amit Levy
• Previously 318, a revamped OS class!

• COS 418 – Distributed Systems – MW 10-1050
• Mike Freedman & Wyatt Lloyd

• COS 432 – Information Security – T/Th 11-1220
• Prateek Mittal
• Primarily listed as ECE 432

• COS IW 11 – IaaS Systems for Business – M 11-1220
• Corey Sanders ’04 (Recently retired CVP from Microsoft)

