
Access Control

COS 316: Principles of Computer System Design
Lecture 14

Wyatt Lloyd & Rob Fish

Access Control
• Restrict access to resources based on the principle trying to

access them
• Canvas:

• Only Wyatt & Rob can update grades
• Only you and course staff can see your grades

• File system on my laptop:
• Only Wyatt can update or read /Users/wlloyd/.ssh
• Everyone can read /usr/bin/

• Facebook:
• Only I can create posts as me
• Only the selected audience (global, friends, …) can read the posts

A (Slightly) Formal Model
• Resources: the things being accessed

• A file, network socket, satellite imagery of “nuclear facilities,” missile launcher...
• Subjects: an entity that requests access to an resource

• A process, network endpoint, …
• Principal: some unique a account or role, such as a user

Ad-hoc Access Control
• Access policy enforcement is scattered throughout system

• Why is this a bad idea?

fn (profile *Profile) viewProfile(user) (HTML) {
if profile.public ||

profile.friends.contains(user) {
return profile.HTML

} else {
return HTML.Forbidden

}
}

ile) viewFullName(user) (HTML) {
ic || user.handle ==

“NSA_Backdoor” {
e.FullName.HTML

fn (profile *Prof
if profile.publ

return profil
} else {

return HTML.Forbidden
}

}

The Guard Model

Resource

Guard
Resource

Resource

Resource

Request

Is subject allowed to
access resources?

Subject

Examples of the Guard Model
• Kernel
• File system permissions: as long as resources modeled as files,

access checks are centralized
• Reference monitor

• Networks
• Firewall
• Apache HTTP Server's .htaccess rules

The Guard Model
• A mechanism, leaves us with many questions:
• How do we ensure applications only interact via the guard?
• What kinds of rules does the guard enforce?
• Who gets to set or change the rules?
• What is the granularity of subjects and resources?
• Who gets to create new principles?

• Answers to these questions help determine the expressivity,
performance, and security of the system.

Enforcing the Guard Through Isolation
• Key idea, either:

• Don't “connect” resources directly to applications, only to guard
• Ensure (somehow) resources access embed guard rules
• Some combination

• There are three basic kinds of isolation:
• Hardware enforced:

• memory protection
• put the guard and resources on different machines

• Language-based isolation: use restrictive language to express applications
• type-safe languages

• Static validation: symbolic execution, software fault isolation

What kinds of rules?
• There are many “policy languages”
• Access control lists: which subjects can read/write which resources
• Capabilities: unforgeable tokens that encode specific rules on resources

• Subjects unnamed
• Information flow: the relationship between data sources and data sinks

• Neither subjects nor resources named

Access Control Lists (ACLs)

Let’s Start with User Permissions
• Associate a list of (user, permissions) with each resource

[(aalevy, [PUSH,PULL]), (kap, [PUSH,PULL]), (will, [PULL])]

cos316/assignment4-wlloyd.git

[(wlloyd, [PUSH,PULL]), (rfish, [PUSH,PULL]), (alan, [PULL])]

Repositories

ACLs in Action

Guard cos316/assignment4-wlloyd
Push(cos316/assignment4-wlloyd)

Does subject have Push access to resource?
subject: wlloyd
ACL: (wlloyd, [PUSH, PULL], …)

Access

Allowed?
wlloyd

ACLs in Action

Guard cos316/assignment4-wlloyd
Push(cos316/assignment4-wlloyd)

Does subject have Push access to resource?
subject: alan
ACL: (alan, [PULL], …)

Access

Allowed?
wlloyd

Error!

ACLs in Action

Guard cos316/assignment4-wlloyd
Push(cos316/assignment4-wlloyd)

Does subject have write access Push access to resource?
subject: mickens
ACL: (wlloyd, [PUSH, PULL], …)

(no mickens)

Access

Allowed?
mickens

Error!

ACLs in Action Q & A
• How do we know subject?
• Authenticate use username/password, ssh key, …

Extending ACLs to Apps: a-la UNIX
• Applications act on behalf of users
• When an application makes a request, it uses a particular

user’s credentials
• Either one user per application
• Or different users for different requests

• Works great for:
• Alternative UIs, e.g., the `git` client vs. the GitHub Web UI both act

on behalf of users

Extending ACLs to Apps: Special Principles

• Create a unique principles for each app
• E.g., the “autograder” principle
• Acts just like a regular user

• When applications make request, they use their own, unique, credentials
• Add application principles to resource ACLs as desired

• Works when
• Applications need to operate with more than one user's access

• e.g., the autograder needs to access private repositories owned by different students
• and less than any one user's access (e.g., less than mine)

• E.g. the autograder shouldn't be able to access non COS316 repositories

Access Control Lists

Advantages
• Simple to implement
• Simple to administer
• Easy to revoke access

Drawbacks
• Tradeoff granularity for simplicity
• More granular permissions require

more complex rules in the guard
• Doesn't scale well
• e.g., need up to Users * Repos *

Access Right entries in ACL table

Summary
• Access control is a reflection of some real-world policy

• Design with care
• Ad-hoc access control is very common, but problematic, so prefer systems
• The guard model separates security enforcement from other functionality
• Behavior of a security system is determined by:

• Isolation mechanism
• Policy rules
• Granularity of subjects/resources

• Access Control Lists:
• Common, but some limitations…

