
Consistency

COS 316: Principles of Computer System Design
Lecture 12

Wyatt Lloyd & Rob Fish



Why Do We Build Systems?
• …
• Abstract away complexity



Distributed Systems are Highly 
Complex Internally

A-F

G-L

M-R

S-Z

Sharding
A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

(Geo)-Replication

Concurrent access by many client



Distributed Systems are Highly 
Complex Internally

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Sharding, Geo-Replication, Concurrency



Distributed Systems are Highly 
Complex Internally

Consistency Models:

Control how much of this 
complexity is abstracted away

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Sharding, Geo-Replication, Concurrency



Consistency Models
• Contract between a (distributed) system and the applications 

that run on it

• A consistency model is a set of guarantees made by the 
distributed system



Stronger vs Weaker Consistency

Application Code

Application Code

Strongly Consistent
Distributed System

Weakly Consistent
Distributed System



Stronger vs Weaker Consistency
• Stronger consistency models

+ Easier to write applications
- System must hide many behaviors

• Fundamental tradeoffs between consistency & performance
• (Discuss CAP, PRAM, SNOW in 418!)

• Weaker consistency models
- Harder to write applications

Cannot (reasonably) write some applications
+ System needs to hide few behaviors



Consistency Hierarchy
Linearizability

Causal+ Consistency

Eventual Consistency

Behaves like a single machine

Everyone sees related 
operations in the same order

Anything goes



Linearizability == 
“Appears to be a Single Machine”
• External client submitting requests and getting responses 

from the system can’t tell this is not a single machine!

• There is some total order over all operations
• Processes all requests one by one

• Order preserves the real-time ordering between operations
• If operation A completes before operation B begins,

then A is ordered before B in real-time
• If neither A nor B completes before the other begins, 

then there is no real-time order
• (But there must be some total order)



Real-Time Ordering Examples
w(x=1)PA

w(x=2)PB

Mythical
Single

Machine



Real-Time Ordering Examples
w(x=1)PA

w(x=2)PB

w(x=3)PC

Mythical
Single

Machine



Linearizable?
w(x=1)PA

w(x=2)PB

w(x=3)PC

PD r(x)=2 r(x)=3 ü
w1, w2, r2, w3, r3



Linearizable?
w(x=1)PA

w(x=2)PB

w(x=3)PC

PD r(x)=2 r(x)=3 ü
PD r(x)=1 r(x)=2 ü

w1, r1, w2, r2, w3



Linearizable?
w(x=1)PA

w(x=2)PB

w(x=3)PC

PD r(x)=2 r(x)=3 ü
PD r(x)=1 r(x)=2 ü
PD r(x)=2 r(x)=2 ü

w1, w2, r2, r2, w3



Linearizable?
w(x=1)PA

w(x=2)PB

w(x=3)PC

PD r(x)=2 r(x)=3 ü
PD r(x)=1 r(x)=2 ü
PD r(x)=2 r(x)=2 ü

w1, r1, w2, w3, r3
PD r(x)=1 r(x)=3 ü



Linearizable?
w(x=1)PA

w(x=2)PB

w(x=3)PC

PD r(x)=2 r(x)=3 ü
PD r(x)=1 r(x)=2 ü
PD r(x)=2 r(x)=2 ü
PD r(x)=1 r(x)=3 ü
PD r(x)=2 r(x)=1 x



Linearizable?
w(x=1)PA

w(x=2)PB

w(x=3)PC

w(x=4)PD w(x=5)

PE w(x=6)

PF r(x)=2 r(x)=3 r(x)=6 r(x)=5 ü
w1, w2, r2, w4, w3, r3, w6, r6, w5, r5

OR
w1, w4, w2, r2, w3, r3, w6, r6, w5, r5

OR
w1, w2, r2, w3, r3, w4, w6, r6, w5, r5



Linearizable?
w(x=1)PA

w(x=2)PB

w(x=3)PC

w(x=4)PD w(x=5)

PE w(x=6)

PG r(x)=2 r(x)=5 r(x)=6 r(x)=5 x



Linearizable?
w(x=1)PA

w(x=2)PB

w(x=3)PC

w(x=4)PD w(x=5)

PE w(x=6)

PH r(x)=4 r(x)=2 r(x)=3 r(x)=6 ü

w1, w4, r4, w2, r2, w3, r3, w5, w6, r6



Linearizable?
w(x=1)PA

w(x=2)PB

r(x)=1PC x



Linearizability == 
“Appears to be a Single Machine”
• There is some total order over all operations
• Processes all requests one by one

• Order preserves the real-time ordering between operations
• If operation A completes before operation B begins,

then A is ordered before B in real-time
• If neither A nor B completes before the other begins, 

then there is no real-time order
• (But there must be some total order)



How to Provide Linearizability?
1. Use a single machine J

2. Use “state-machine replication” on top of a consensus 
protocol like Paxos
• Distributed system appears to be single machine that does not fail!!
• Covered extensively in 418

3. …



Consistency Hierarchy
Linearizability

Causal+ Consistency

Eventual Consistency

Behaves like a single machine

Everyone sees related 
operations in the same order

Anything goes



Consistency Hierarchy
Linearizability

Causal+ Consistency

Eventual Consistency

CAP PRAM 1988
(Princeton)



Causal+ Consistency Informally
1. Writes that are potentially causally related 

must be seen by everyone in the same order. 
2. Concurrent writes may be seen in a different 

order by different entities.
• Concurrent: Writes not causally related

• Potential causality: event a could have a causal 
effect on event b. 
• Think: is there a path of information from a to b?

• a and b done by the same entity (e.g., me)
• a is a write and b is a read of that write
• + transitivity



Causal+ Sufficient

New Job!

Friends
Boss

Then

Employment 
retained

Then

Purchase
retained

Deletion
retained

Then



Causal+ Sufficient

Then Then Then



Causal+ Not Sufficient
(Need Linearizability)

• Need a total order of operations
• e.g., Alice’s bank account ≥ 0

• Need a real-time ordering of operations
• e.g., Alice changes her password, Bob cannot login with old password



Consistency Hierarchy
Linearizability

Causal+ Consistency

Eventual Consistency

Behaves like a single machine

Everyone sees related 
operations in the same order

Anything goes



Eventual Consistency
• Anything goes for now…
• (If updates stop, 

eventually all copies of the data are the same)

• But, eventually consistent systems often try to provide 
consistency and often do
• e.g., Facebook’s TAO system provided linearizable results 99.9994% 

of the time [Lu et al. SOSP ‘15]

• “Good enough” sometimes
• e.g., 99 vs 100 likes



Consistency Model Summary
• Consistency model specifies strength of abstraction

• Linearizability à Causal+ à Eventual
• Stronger hides more, but has worse performance

• When building an application, what do you need?
• Select system(s) with necessary consistency
• Always safe to pick stronger

• When building a system, what are your guarantees?
• Must design system such that they always hold
• Must confront fundamental tradeoffs with performance

• What is more important?




