Web Caching

Bl vET | Nov (M
TES | TAM
il Ex | TvMm|f]

COS 316: Principles of Computer System Design
Lecture 10

Wyatt Lloyd & Rob Fish

Downloading a Web Page

User visits https://www.youtube.com

e =
=800

SEe |
wal Gock. W Viaatnar {

Q o
*xrwmy

o-°% The Internet

’
'I‘. "‘
co%@ e /
2

| e www.youtube.com

http://www.youtube.com/
http://www.youtube.com/

Downloading a Web Page

(https://www.youtube.com)

el &
=ams |
al @&
bl)

= l- Secure session (TLS)
B

voeB

4 Web messages (HTTP)~.

\t

End-to-end connection (TCP)

)

www.youtube.com

142.251.41.14

http://www.youtube.com/
http://www.youtube.com/

Multiple Problems

- User latency l[’
* Round-trips to query multiple DNS servers i
* Multiple round-trips with the Web server \\

 Delivery of a (possibly large) Web item

» Server overhead
* Handling many requests from many clients
* Financial costs to deploy enough servers

 Network bandwidth

* Traffic on many links in multiple networks
* Financial costs for the affected networks

LOADING...

A Solution: Caching

« Keep all data in bigger, cheaper, slower storage
« Keep copies of active data in smaller, more expensive, faster storage

RIRINININ

—(D
Cache /</Iemory Bus Memory
—\ /

NIRININEN

L [

HiN

OO

What do we cache?

« Data stored verbatim in slower storage
* Previous computations — recomputations are a kind of ‘slow storage’

 Examples
« CPU memory hierarchy
 File system page buffer
 Domain Name System (DNS)
« Content Distribution Networks (CDN)
 Web browser caches
- Database caches

Caching to the Rescue: Domain Name System

« What to cache?

* Mapping of popular names to IP addresses
 E.g., www.youtube.com - 142.251.41.14

« Mapping of parts of names to DNS server IPs
 E.g., .com top-level domain - 192.26.92.30

http://www.youtube.com/

Caching to the Rescue: Domain Name System

« What to cache?

root DNS server

* Mapping of popular names to IP addresses]
 E.g., www.youtube.com - 142.251.41.14
« Mapping of parts of names to DNS server IPs %
- .com DNS server
 E.g., .com top-level domain - 192.26.92.30 4 -
local DNS >
server b 5 i
1 8 ! o
w .
@ authoritative
DNS server

requesting host

http://www.youtube.com/

Caching to the Rescue: Domain Name System

« What to cache?

root DNS server

* Mapping of popular names to IP addresses]
 E.g., www.youtube.com - 142.251.41.14
« Mapping of parts of names to DNS server IPs %
« E.g., .com top-level domain > 192.26.92.30 A .com DNS server
local DNS W ’D
server 5
* Where to cache?
« Local DNS server (e.g., for the campus)
 Client machine (e.g., user’s browser) A s 2N\ 6
w .
* How to avoid stale information? @ authoritative
DNS server

« Cached entries have a limited “time to live” requesting host

http://www.youtube.com/

Caching to the Rescue: Communication Channel

* End-to-end communication
« TLS: confidentiality, integrity, and authenticity
« TCP: ordered, reliable delivery of byte stream

 Establishing the channel is expensive
« Communication delays, creating data structures, and computing keys

« Exploit temporal locality by reusing the channels
-

m@oo | Transport Layer Security (TLS)
e —————————————————————>

Transmission Control Protocol (TCP)

Temporal Locality

* Temporal locality: nearness in time

« Data accessed now was probably accessed recently

e Useful data tends to continue to be useful

Caching to the Rescue: Web Iltems

« Cache Web items closer to the client
* Reduce latency
 Reduce server overhead
* Reduce use of network bandwidth

cache hit!

|=@oo|
mOolBEs
*xmE
8=0"

Toea

=
-3

Web Caching Should Work Well!

Zipf Distribution
I[tem of rank k has

frequency ~ 1/ka

10,000

1000
Number of

Requests 100
10

1

1 10 100 1000 10,000 ===
Popularity Rank

CDN Cache Hit

On cache hit, retrieve the object from the cache!

CDN Cache Miss

X?

If | want to store X, what do | get rid of to make space?

Cache Algorithms 101

* First In First Out (FIFO)
 Least recently used (LRU)
 Least frequently used (LFU)
 Belady (Offline optimal)

* (Note: all fully associative today)

First-In-First-Out (FIFO)

 Evict objects added to cache longest ago
* Very simple!

* 3 item cache example:
 Request stream: a,b,a,c,a,d,a,e,a,f,g

« Can we do better?

Least Recently Used (LRU)

 Evict object used longest ago
» “Objects used more recently are more likely to be accessed again”

« Exploits temporal locality

* Implementation: Update access time for every hit

* 3 item cache example:
 Request stream: a,b,a,c,a,d,a,e,a,f,g
* Request stream: h, h, h, 1, J, k, h

Least Frequently Used (LFU)

 Evict object with fewest hits
» “Objects used more often are more likely to be accessed again”

* |If tie, use LRU

* Implementation: Update access count for every hit

* 3 item cache example:
 Request stream: a,b,a,c,a,d,a,e,a,f,g
* Request stream: h, h, h, 1, J, k, h
 Request stream: |, I, m, n, o, m

Belady (Offline Optimal Caching)

 What is the best a caching algorithm could do?

 Offline: uses knowledge of the future
« (Can’t use in practice)

 Evict the object with the furthest next access time
* Worst object to keep in the cache

* 3 item cache example:
* Request stream: h, h, h, 1, J, k, h
 Request stream: |, I, m, n, o, m

Effectiveness of Algorithms for CDN Caching?

[Figures from From “An Analysis of Facebook Photo Caching” at Symposium on Operating System Principles, 2013.]

Edge Cache with Different Sizes

85 |

Hit ratio
A U1 O N
U1 U1 U1 U1

|

w
on

Cache size

Facebook’s San Jose CDN edge cache circa 2013

22

Edge Cache with Different Sizes

85

Hit ratio
Li O <~
U1 U1 U1

w A
U1 U

o)
oo 6%
59% Ny

X 2X 3x
Cache size

« “x” estimates deployment size (59% hit ratio)

23

Edge Cache with Different Sizes

85 Infinite: Cache
(0)

o 75 65% 68<
«— (0)
E 65 59% Ny
= 55

45

35 T

X 2X 3x
Cache size

* “Infinite” size ratio needs 45x of capacity

24

Edge Cache with Different Algos

85 Infinite Cache
75
.0
§ 65
= 55
45
FIFO
35 I I , |
X 2X 3x

Cache size
LRU > LFU > FIFO

25

Edge Cache with Different Algos

85 Infinite Cache

Hit ratio
Li O <~
U1 U1 U1

A
Oy

X 2X 3x
Cache size

1/3X

 S4LRU is a more complex algorithm, uses recency and frequency

26

Edge Cache with Different Algos

85 Infinite: Cache
75
.9 33 3 ¥ 33 3 oaaaa
g 65 Ay‘)"AlAplll ““““
L ’’’’’
B
L >3 Clairvoyant e LFU —g—
45 | S4LRU —g— FIFO —a-
‘ LRU e
35 ¥ | ! | .]
X 2X 3x
Cache size

« Clairvoyant (Belady) shows we can do much better!

27

Cache Consistency

Last Updated 9:19pm EST .* +

Some Web Content is Not Cacheable jetat.

AGSPC 1,367.59 ~1.

AAPL 525.76 ~»
AFFLE INC

T 30.36 +0.
ATET INC

* Dynamic content T
» E.g., stock prices, scores, streaming video v e o
 Content generated by scripts 00 st
* Results depend on the specific parameters
* E.g., https://www.google.com/search?q=php+script+url

 Personalized content

* E.g., based on cookie sent by the browser l l
* Encrypted content

« Cannot decrypt without the appropriate key

Powered by Edulifeling com

http://www.google.com/search?q=php%2Bscript%2Burl

Cache Consistency Challenges

=800
mols

- @ Shared

o
. Personal

Cache Cache

e

Web cache needs to know

 Whether to cache an item

 How long to cache an item

« Whether to check an item’s freshness
 Whether it is okay to return a stale item
 Whether the item has sensitive data

Cache Consistency Challenges

Shared

rsonal

Cache Cache

Web cache needs to know Server knows the content

 Whether to cache an item * Whether the item is dynamic

 How long to cache an item * How often the item changes

* Whether to check an item’s freshness * Whether the item has changed

* Whether it is okay to return a stale item * Whether stale information is useful
* Whether the item has sensitive data * Whether item contains sensitive daf

Scalability challenge: the server cannot remember every client that has cached an item

HTTP Response Header for Cache Control

* Whether to cache
* no store: no cache should store it

* Who should cache

e private: only a private cache (e.g., browser)
* public: any cache, including shared ones

 How long to cache
* max-age=N: for N seconds
* must-revalidate: check with the server (don’t return stale item)

Cache-Control: public, max-age=86400, must-revalidate

Cache Validation: Client Checks

Freshness
@00 | GET /index.html

B . “if <this version> is stale”

e. Persona

I —
< | Cache 304 Not Modified

Cache Validation: Client Checks

Freshness

GET /index.html
“If <this version> iIs stale”

304 Not Modified ~

How do they identify the

* Timestamp
 When the item was modified by the server
- E.g., Last-Modified: Wed, 21 Oct 2015 07:28:00 GMT
* Version number
 Entity tag provided by the server
* E.g., ETag: "33a64df551425fcc55e4d42a148795d9f25f89d4"

A “

o. Persona
| Cache

P

vers _Onuz

Cache Placement

Client Machine (e.g., Browser)

Advantages Disadvantages
 Very low latency * Low hit rate due to “cold” misses

* Preserves access bandwidth Many cache consistency checks
 Available when disconnected * Incomplete logs at the server

a-n Person
| al

‘was

Client Network (Forward Proxy Cache)

Advantages Disadvantages
* Low latency » Cost to deploy the cache

* Preserves enterprise bandwidth < Many consistency checks
 Hits for locally popular content + Incomplete logs at the server

J /] j

Shared

Cache

Server Network (Reverse Proxy Cache)

Advantages Disadvantages
* High hit rate across global users * Costs to deploy the cache

» Greater cooperation with server * Does not reduce latency much

« Complete request logs for server + Consumes wide-area bandwidth
* Preserves server bandwidth

Content Distribution Network (CDN)

» Outsourced caching infrastructure
» Caching for clients and servers

) . O
* Dedicated equipment and software ® ®
* Trained staff, best practices, etc. O ®
» Coordination with the server P
. O
» Generating non-cacheable content =
* Providing detailed measurement data O

 Smart cache placement
 Many caches: handle large request load

» Close to many clients: reduce latency wore than 4200 locations in 135 countries

CDN Challenges

* Where to place edge sites?
* Close to many clients, with reasonable cost

 Where to replicate a server’s content?
 Many edge sites - duplicated data
* Few edge sites = larger client latency

* How to direct a client to an edge site?
* Proximity: for low latency
* Light load: to reduce congestion

 How to manage each cache?
« Maximize hit rate?
* Minimize miss penalty?
« Fairness across origin servers?

E |E |E
O |0 |©o
O |0 |©O
[|o
cach
e
O
O

A Hierarchy of CDN Caches

[Figures from Qi Huang’s 2013 SOSP Talk]

Geo distributed Edge Cache (FIFO)
Client }/ PoP

(Mllllons) (Tens)

\ hﬁ “’

‘b mr

Geo distributed Edge Cache (FIFO)

Client " PoP
Browser Edge
Cache
S — \)
(Millions) (Tens)
/ Purpose

1. Reduce cross-country latency

2. Reduce Data Center bandwidth

.

43

Geo-distributed Edge Cache (FIFO)

4 Client " PoP

A = -L =4
4_

\ A\ "/

(Millions) (Tens)

2

Geo-distributed Edge Cache (FIFO)

4 Client " PoP
& _'
4_

\

(Millions) (Tens)

"

Slngle Global Origin Cache (FIFO)

Client]
\

(Millions)

|g,
T

~ PoP

Edge

(Tens)

—
4_

Data Center

\-

(Four)

2~ 1
&

46

Slngle Global Origin Cache (FIFO)

-

Client 7 PoP Data Center
= -
4_
\ L A
(M|II|ons) (Tens) (Four)
Purpose

.

1. Minimize I/0-bound operations

47

Slngle Global Origin Cache (FIFO)

Client }
\

(Millions)

~ PoP

Edge

L J

(Tens)

—
4_

Data Center

48

Slngle Global Origin Cache (FIFO)

Client]
\>

(Millions)

|g,
T

~ PoP

Edge

_J

(Tens)

—
4_

e

Data Center

\-

(Four)

&

49

Bagkend

Client]
4_
N

(Millions)

Data Center N

/
— —
N "/

(Four)

CDN Effectiveness

Client " PoP 4 Data Center N
= - -
\ LU),
77.2M l
) 26.6M
65.5% =t 11 o1
70 7.6M
31.8% —
Traffic Share 65.5% 20.0% 4.6% 9.9%

51

Conclusions

 Downloading a Web page

 Name resolution, transport connection, secure session, web messages

* Benefits of caching
* Reduces user latency, server load, and network bandwidth

» Cache replacement
 Maximize hit rate by trying to predict the future

« Cache consistency
- Efficient ways to avoid returning unnecessarily stale responses

» Content distribution networks
« Caching close to clients, while working on behalf of the servers

