
Web Caching

COS 316: Principles of Computer System Design
Lecture 10

Wyatt Lloyd & Rob Fish

Downloading a Web Page

The Internet

www.youtube.com

User visits https://www.youtube.com

http://www.youtube.com/
http://www.youtube.com/

Downloading a Web Page
(https://www.youtube.com)

www.yo
utube.com?

142.251.41.14

Web messages (HTTP)

Secure session (TLS)

End-to-end connection (TCP)

www.youtube.com
142.251.41.14

http://www.youtube.com/
http://www.youtube.com/

Multiple Problems

•User latency
• Round-trips to query multiple DNS servers
• Multiple round-trips with the Web server
• Delivery of a (possibly large) Web item

• Server overhead
• Handling many requests from many clients
• Financial costs to deploy enough servers

•Network bandwidth
• Traffic on many links in multiple networks
• Financial costs for the affected networks

A Solution: Caching
• Keep all data in bigger, cheaper, slower storage
• Keep copies of active data in smaller, more expensive, faster storage

What do we cache?
• Data stored verbatim in slower storage
• Previous computations – recomputations are a kind of `slow storage’
• Examples
• CPU memory hierarchy
• File system page buffer
• Domain Name System (DNS)
• Content Distribution Networks (CDN)
• Web browser caches
• Database caches

Caching to the Rescue: Domain Name System
• What to cache?

• Mapping of popular names to IP addresses
• E.g., www.youtube.com à 142.251.41.14

• Mapping of parts of names to DNS server IPs
• E.g., .com top-level domain à 192.26.92.30

http://www.youtube.com/

Caching to the Rescue: Domain Name System
• What to cache?

• Mapping of popular names to IP addresses
• E.g., www.youtube.com à 142.251.41.14

• Mapping of parts of names to DNS server IPs
• E.g., .com top-level domain à 192.26.92.30

requesting host

root DNS server

local DNS
server

1

2
3

5

6

authoritative
DNS server

78

.com DNS server
4

http://www.youtube.com/

Caching to the Rescue: Domain Name System
• What to cache?

• Mapping of popular names to IP addresses
• E.g., www.youtube.com à 142.251.41.14

• Mapping of parts of names to DNS server IPs
• E.g., .com top-level domain à 192.26.92.30

• Where to cache?
• Local DNS server (e.g., for the campus)
• Client machine (e.g., user’s browser)

• How to avoid stale information?
• Cached entries have a limited “time to live” requesting host

root DNS server

local DNS
server

1

2
3

5

6

authoritative
DNS server

78

.com DNS server
4

http://www.youtube.com/

Caching to the Rescue: Communication Channel

• End-to-end communication
• TLS: confidentiality, integrity, and authenticity
• TCP: ordered, reliable delivery of byte stream

• Establishing the channel is expensive
• Communication delays, creating data structures, and computing keys

• Exploit temporal locality by reusing the channels

Transport Layer Security (TLS)

Transmission Control Protocol (TCP)

Temporal Locality
• Temporal locality: nearness in time

• Data accessed now was probably accessed recently

• Useful data tends to continue to be useful

Caching to the Rescue: Web Items

Web
Cache

•Cache Web items closer to the client
• Reduce latency
• Reduce server overhead
• Reduce use of network bandwidth

cache hit!

Web Caching Should Work Well!

1 10 100 1000 10,000
Popularity Rank

…

100

10

1

10,000
1000

Number of
Requests

Zipf Distribution
Item of rank k has
frequency ~ 1/ka

CDN Cache Hit

G?

A B C

D E F

G H I

J K L

G

On cache hit, retrieve the object from the cache!

CDN Cache Miss

X?

A B C

D E F

G H I

J K L

X

X?

X

X

If I want to store X, what do I get rid of to make space?

Cache Algorithms 101
• First In First Out (FIFO)
• Least recently used (LRU)
• Least frequently used (LFU)
• Belady (Offline optimal)

• (Note: all fully associative today)

First-In-First-Out (FIFO)
• Evict objects added to cache longest ago
• Very simple!

• 3 item cache example:
• Request stream: a, b, a, c, a, d, a, e, a, f, g

• Can we do better?

Least Recently Used (LRU)
• Evict object used longest ago
• “Objects used more recently are more likely to be accessed again”
• Exploits temporal locality

• Implementation: Update access time for every hit

• 3 item cache example:
• Request stream: a, b, a, c, a, d, a, e, a, f, g
• Request stream: h, h, h, i, j, k, h

Least Frequently Used (LFU)
• Evict object with fewest hits
• “Objects used more often are more likely to be accessed again”
• If tie, use LRU

• Implementation: Update access count for every hit

• 3 item cache example:
• Request stream: a, b, a, c, a, d, a, e, a, f, g
• Request stream: h, h, h, i, j, k, h
• Request stream: l, l, m, n, o, m

Belady (Offline Optimal Caching)
• What is the best a caching algorithm could do?
• Offline: uses knowledge of the future
• (Can’t use in practice)

• Evict the object with the furthest next access time
• Worst object to keep in the cache

• 3 item cache example:
• Request stream: h, h, h, i, j, k, h
• Request stream: l, l, m, n, o, m

Effectiveness of Algorithms for CDN Caching?

[Figures from From “An Analysis of Facebook Photo Caching” at Symposium on Operating System Principles, 2013.]

Edge Cache with Different Sizes

• Facebook’s San Jose CDN edge cache circa 2013

��

��

��

��

��

��

�
���
��
���

����������

����

59%

22

��

��

��

��

��

��

� �� ��

�
���
��
���

����������

����

Edge Cache with Different Sizes

• “x” estimates deployment size (59% hit ratio)

65% 68%
59%

23

Edge Cache with Different Sizes

• “Infinite” size ratio needs 45x of capacity

��

��

��

��

��

��

� �� ��

�
���
��
���

����������

����

Infinite Cache

65% 68%
59%

24

Edge Cache with Different Algos

• LRU > LFU > FIFO

��

��

��

��

��

��

� �� ��

�
���
��
���

����������

���
���
����

Infinite Cache

25

��

��

��

��

��

��

� �� ��

�
���
��
���

����������

�����
���
���
����

Edge Cache with Different Algos

• S4LRU is a more complex algorithm, uses recency and frequency

68%

1/3x

Infinite Cache

26

59%

Edge Cache with Different Algos

• Clairvoyant (Bélády) shows we can do much better!

��

��

��

��

��

��

� �� ��

�
���
��
���

����������

�����������
�����
���

���
����

Infinite Cache

27

Cache Consistency

Some Web Content is Not Cacheable

•Dynamic content
• E.g., stock prices, scores, streaming video

•Content generated by scripts
• Results depend on the specific parameters
• E.g., https://www.google.com/search?q=php+script+url

• Personalized content
• E.g., based on cookie sent by the browser

• Encrypted content
• Cannot decrypt without the appropriate key

http://www.google.com/search?q=php%2Bscript%2Burl

Cache Consistency Challenges

Web cache needs to know
• Whether to cache an item
• How long to cache an item
• Whether to check an item’s freshness
• Whether it is okay to return a stale item
• Whether the item has sensitive data

Shared
CachePersonal

Cache

Cache Consistency Challenges

Web cache needs to know
• Whether to cache an item
• How long to cache an item
• Whether to check an item’s freshness
• Whether it is okay to return a stale item
• Whether the item has sensitive data

Server knows the content
• Whether the item is dynamic
• How often the item changes
• Whether the item has changed
• Whether stale information is useful
• Whether item contains sensitive data

Shared
CachePersonal

Cache

Scalability challenge: the server cannot remember every client that has cached an item

HTTP Response Header for Cache Control

•Whether to cache
• no store: no cache should store it

•Who should cache
• private: only a private cache (e.g., browser)
• public: any cache, including shared ones

•How long to cache
• max-age=N: for N seconds
• must-revalidate: check with the server (don’t return stale item)

Cache-Control: public, max-age=86400, must-revalidate

Cache Validation: Client Checks
Freshness

Persona
l Cache

GET /index.html
“if <this version> is stale”

304 Not Modified

Cache Validation: Client Checks
Freshness

How do they identify the “version”?
• Timestamp
• When the item was modified by the server
• E.g., Last-Modified: Wed, 21 Oct 2015 07:28:00 GMT

• Version number
• Entity tag provided by the server
• E.g., ETag: "33a64df551425fcc55e4d42a148795d9f25f89d4"

Persona
l Cache

GET /index.html
“if <this version> is stale”

304 Not Modified

Cache Placement

Client Machine (e.g., Browser)
Advantages
• Very low latency
• Preserves access bandwidth
• Available when disconnected

Disadvantages
• Low hit rate due to “cold” misses
• Many cache consistency checks
• Incomplete logs at the server

Person
al
Cache

Client Network (Forward Proxy Cache)
Advantages
• Low latency
• Preserves enterprise bandwidth
• Hits for locally popular content

Disadvantages
• Cost to deploy the cache
• Many consistency checks
• Incomplete logs at the server

Shared
Cache

Server Network (Reverse Proxy Cache)
Advantages
• High hit rate across global users
• Greater cooperation with server
• Complete request logs for server
• Preserves server bandwidth

Disadvantages
• Costs to deploy the cache
• Does not reduce latency much
• Consumes wide-area bandwidth

Shared

Cache

Content Distribution Network (CDN)

• Outsourced caching infrastructure
• Caching for clients and servers
• Dedicated equipment and software
• Trained staff, best practices, etc.

• Coordination with the server
• Generating non-cacheable content
• Providing detailed measurement data

• Smart cache placement
• Many caches: handle large request load
• Close to many clients: reduce latency More than 4200 locations in 135 countries

CDN Challenges
• Where to place edge sites?

• Close to many clients, with reasonable cost
• Where to replicate a server’s content?

• Many edge sites à duplicated data
• Few edge sites à larger client latency

• How to direct a client to an edge site?
• Proximity: for low latency
• Light load: to reduce congestion

• How to manage each cache?
• Maximize hit rate?
• Minimize miss penalty?
• Fairness across origin servers?

c
c

c
c

cach
e

a.
co

m

b.
co

m

c.
co

m

A Hierarchy of CDN Caches

[Figures from Qi Huang’s 2013 SOSP Talk]

Geo-distributed Edge Cache (FIFO)

Edge
Cache

(Tens)

Browser
Cache

Client PoP

(Millions)

42

Geo-distributed Edge Cache (FIFO)

Edge
Cache

(Tens)

Browser
Cache

Client PoP

(Millions)

43

Purpose

1. Reduce cross-country latency

2. Reduce Data Center bandwidth

Geo-distributed Edge Cache (FIFO)

Edge
Cache

(Tens)

Browser
Cache

Client PoP

(Millions)

44

Geo-distributed Edge Cache (FIFO)

Edge
Cache

(Tens)

Browser
Cache

Client PoP

(Millions)

45

Single Global Origin Cache (FIFO)

Browser
Cache

Edge
Cache

Origin
Cache

PoPClient Data Center

(Tens)(Millions) (Four)

46

Single Global Origin Cache (FIFO)

Browser
Cache

Edge
Cache

Origin
Cache

PoPClient Data Center

(Tens)(Millions) (Four)

47

Purpose

1. Minimize I/O-bound operations

Single Global Origin Cache (FIFO)

Browser
Cache

Edge
Cache

Origin
Cache

PoPClient Data Center

(Tens)(Millions) (Four)

Hash(url)

48

Single Global Origin Cache (FIFO)

Browser
Cache

Edge
Cache

Origin
Cache

PoPClient Data Center

(Tens)(Millions) (Four)

49

Backend
BackendBrowser

Cache
Edge

Cache
Origin
Cache

PoPClient Data Center

(Tens)(Millions) (Four)

50

CDN Effectiveness

77.2M

26.6M
11.2M

7.6M

BackendBrowser
Cache

Edge
Cache

Origin
Cache

PoPClient Data Center

65.5%
58.0%

31.8%

R

Traffic Share 65.5% 20.0% 4.6% 9.9%

51

Conclusions
• Downloading a Web page
• Name resolution, transport connection, secure session, web messages

• Benefits of caching
• Reduces user latency, server load, and network bandwidth

• Cache replacement
• Maximize hit rate by trying to predict the future

• Cache consistency
• Efficient ways to avoid returning unnecessarily stale responses

• Content distribution networks
• Caching close to clients, while working on behalf of the servers

