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Multiple Problems

•User latency
• Round-trips to query multiple DNS servers
• Multiple round-trips with the Web server
• Delivery of a (possibly large) Web item

• Server overhead
• Handling many requests from many clients
• Financial costs to deploy enough servers

•Network bandwidth
• Traffic on many links in multiple networks
• Financial costs for the affected networks



A Solution: Caching
• Keep all data in bigger, cheaper, slower storage
• Keep copies of active data in smaller, more expensive, faster storage



What do we cache?
• Data stored verbatim in slower storage
• Previous computations – recomputations are a kind of `slow storage’
• Examples
• CPU memory hierarchy
• File system page buffer
• Domain Name System (DNS)
• Content Distribution Networks (CDN)
• Web browser caches
• Database caches



Caching to the Rescue: Domain Name System
• What to cache?

• Mapping of popular names to IP addresses
• E.g., www.youtube.com à 142.251.41.14

• Mapping of parts of names to DNS server IPs
• E.g., .com top-level domain à 192.26.92.30
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Caching to the Rescue: Domain Name System
• What to cache?

• Mapping of popular names to IP addresses
• E.g., www.youtube.com à 142.251.41.14

• Mapping of parts of names to DNS server IPs
• E.g., .com top-level domain à 192.26.92.30

• Where to cache?
• Local DNS server (e.g., for the campus)
• Client machine (e.g., user’s browser)

• How to avoid stale information?
• Cached entries have a limited “time to live” requesting host
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Caching to the Rescue: Communication Channel

• End-to-end communication
• TLS: confidentiality, integrity, and authenticity
• TCP: ordered, reliable delivery of byte stream

• Establishing the channel is expensive
• Communication delays, creating data structures, and computing keys

• Exploit temporal locality by reusing the channels

Transport Layer Security (TLS) 

Transmission Control Protocol (TCP)



Temporal Locality
• Temporal locality: nearness in time

• Data accessed now was probably accessed recently

• Useful data tends to continue to be useful



Caching to the Rescue: Web Items

Web 
Cache

•Cache Web items closer to the client
• Reduce latency
• Reduce server overhead
• Reduce use of network bandwidth

cache hit!



Web Caching Should Work Well!
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CDN Cache Hit
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On cache hit, retrieve the object from the cache!



CDN Cache Miss
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If I want to store X, what do I get rid of to make space?



Cache Algorithms 101
• First In First Out (FIFO)
• Least recently used (LRU)
• Least frequently used (LFU)
• Belady (Offline optimal)

• (Note: all fully associative today)



First-In-First-Out (FIFO)
• Evict objects added to cache longest ago
• Very simple!

• 3 item cache example:
• Request stream: a, b, a, c, a, d, a, e, a, f, g

• Can we do better?



Least Recently Used (LRU)
• Evict object used longest ago
• “Objects used more recently are more likely to be accessed again”
• Exploits temporal locality

• Implementation: Update access time for every hit

• 3 item cache example:
• Request stream: a, b, a, c, a, d, a, e, a, f, g
• Request stream: h, h, h, i, j, k, h 



Least Frequently Used (LFU)
• Evict object with fewest hits
• “Objects used more often are more likely to be accessed again”
• If tie, use LRU

• Implementation: Update access count for every hit

• 3 item cache example:
• Request stream: a, b, a, c, a, d, a, e, a, f, g
• Request stream: h, h, h, i, j, k, h
• Request stream: l, l, m, n, o, m



Belady (Offline Optimal Caching)
• What is the best a caching algorithm could do?
• Offline: uses knowledge of the future
• (Can’t use in practice)

• Evict the object with the furthest next access time
• Worst object to keep in the cache

• 3 item cache example:
• Request stream: h, h, h, i, j, k, h
• Request stream: l, l, m, n, o, m



Effectiveness of Algorithms for CDN Caching?

[Figures from From “An Analysis of Facebook Photo Caching” at Symposium on Operating System Principles, 2013.]



Edge Cache with Different Sizes

• Facebook’s San Jose CDN edge cache circa 2013
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Edge Cache with Different Sizes

• “x” estimates deployment size (59% hit ratio)
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Edge Cache with Different Sizes

• “Infinite” size ratio needs 45x of capacity
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Edge Cache with Different Algos

• LRU > LFU > FIFO
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Edge Cache with Different Algos

• S4LRU is a more complex algorithm, uses recency and frequency
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Edge Cache with Different Algos

• Clairvoyant (Bélády) shows we can do much better!
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Cache Consistency



Some Web Content is Not Cacheable

•Dynamic content
• E.g., stock prices, scores, streaming video

•Content generated by scripts
• Results depend on the specific parameters
• E.g., https://www.google.com/search?q=php+script+url

• Personalized content
• E.g., based on cookie sent by the browser

• Encrypted content
• Cannot decrypt without the appropriate key

http://www.google.com/search?q=php%2Bscript%2Burl


Cache Consistency Challenges

Web cache needs to know
• Whether to cache an item
• How long to cache an item
• Whether to check an item’s freshness
• Whether it is okay to return a stale item
• Whether the item has sensitive data

Shared  
CachePersonal

Cache



Cache Consistency Challenges

Web cache needs to know
• Whether to cache an item
• How long to cache an item
• Whether to check an item’s freshness
• Whether it is okay to return a stale item
• Whether the item has sensitive data

Server knows the content
• Whether the item is dynamic
• How often the item changes
• Whether the item has changed
• Whether stale information is useful
• Whether item contains sensitive data

Shared  
CachePersonal

Cache

Scalability challenge: the server cannot remember every client that has cached an item



HTTP Response Header for Cache Control

•Whether to cache
• no store: no cache should store it

•Who should cache
• private: only a private cache (e.g., browser)
• public: any cache, including shared ones

•How long to cache
• max-age=N: for N seconds
• must-revalidate: check with the server (don’t return stale item)

Cache-Control: public, max-age=86400, must-revalidate



Cache Validation: Client Checks
Freshness

Persona
l Cache

GET /index.html
“if <this version> is stale”

304 Not Modified



Cache Validation: Client Checks
Freshness

How do they identify the “version”?
• Timestamp
• When the item was modified by the server
• E.g., Last-Modified: Wed, 21 Oct 2015 07:28:00 GMT

• Version number
• Entity tag provided by the server
• E.g., ETag: "33a64df551425fcc55e4d42a148795d9f25f89d4"

Persona
l Cache

GET /index.html
“if <this version> is stale”

304 Not Modified



Cache Placement



Client Machine (e.g., Browser)
Advantages
• Very low latency
• Preserves access bandwidth
• Available when disconnected

Disadvantages
• Low hit rate due to “cold” misses
• Many cache consistency checks
• Incomplete logs at the server

Person
al  
Cache



Client Network (Forward Proxy Cache)
Advantages
• Low latency
• Preserves enterprise bandwidth
• Hits for locally popular content

Disadvantages
• Cost to deploy the cache
• Many consistency checks
• Incomplete logs at the server

Shared  
Cache



Server Network (Reverse Proxy Cache)
Advantages
• High hit rate across global users
• Greater cooperation with server
• Complete request logs for server
• Preserves server bandwidth

Disadvantages
• Costs to deploy the cache
• Does not reduce latency much
• Consumes wide-area bandwidth

Shared

Cache



Content Distribution Network (CDN)

• Outsourced caching infrastructure
• Caching for clients and servers
• Dedicated equipment and software
• Trained staff, best practices, etc.

• Coordination with the server
• Generating non-cacheable content
• Providing detailed measurement data

• Smart cache placement
• Many caches: handle large request load
• Close to many clients: reduce latency More than 4200 locations in 135 countries



CDN Challenges
• Where to place edge sites?

• Close to many clients, with reasonable cost
• Where to replicate a server’s content?

• Many edge sites à duplicated data
• Few edge sites à larger client latency

• How to direct a client to an edge site?
• Proximity: for low latency
• Light load: to reduce congestion

• How to manage each cache?
• Maximize hit rate?
• Minimize miss penalty?
• Fairness across origin servers?
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A Hierarchy of CDN Caches

[Figures from Qi Huang’s 2013 SOSP Talk]
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Geo-distributed Edge Cache (FIFO)
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Purpose

1. Reduce cross-country latency

2. Reduce Data Center bandwidth
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Single Global Origin Cache (FIFO)
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Single Global Origin Cache (FIFO)

Browser 
Cache

Edge 
Cache

Origin
Cache

PoPClient Data Center

(Tens)(Millions) (Four)

47

Purpose

1. Minimize I/O-bound operations



Single Global Origin Cache (FIFO)
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Single Global Origin Cache (FIFO)
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Backend
BackendBrowser 
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Edge 
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CDN Effectiveness

77.2M
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7.6M

BackendBrowser 
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PoPClient Data Center
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R

Traffic Share 65.5% 20.0% 4.6% 9.9%
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Conclusions
• Downloading a Web page
• Name resolution, transport connection, secure session, web messages

• Benefits of caching
• Reduces user latency, server load, and network bandwidth

• Cache replacement
• Maximize hit rate by trying to predict the future

• Cache consistency
• Efficient ways to avoid returning unnecessarily stale responses

• Content distribution networks
• Caching close to clients, while working on behalf of the servers






