
BBR Congestion Control

COS 316: Principles of Computer System Design
Lecture 9

Wyatt Lloyd & Rob Fish



TCP “Sawtooth”

2

Window

halved

Loss

Time



Congesting the network

Underutilizing the network

TCP Sawtooth Misses the Mark

3

Window

Time

GOAL:



Can We Do Better?
• Yes! Researchers in academia and industry actively working 

on it for 35+ years and still going!

• 100s of congestion control schemes proposed…

• A couple of papers at every SIGCOMM…



Today: BBR Congestion Control
• BBR: bottleneck bandwidth and round-trip propagation time



Bottleneck Bandwidth

Sender ReceiverLink 1 Link 2 Link 3 Link 4

Bottleneck link



Send at > Bottleneck Bandwidth

Sender ReceiverLink 1 Link 2 Link 3 Link 4

Queue grows until full
and we drop packets

Goal: Sending rate =  bottleneck bandwidth



Link 2

Bandwidth Delay Product (BDP)

Sender Receiver

Round trip propagation delay (RTProp)

Bandwidth Delay Product = RTProp * Bottleneck Bandwidth



Data in Flight vs. Bandwidth Delay Product

• Data in flight = un-acknowledged data

• If data in flight > bandwidth delay product?
• Queue before bottleneck grows

• If data in flight < bandwidth delay product?
• Can’t fill bottleneck at all time => underutilization

• Goal: Data in flight = BDP = RTProp * bottleneck bandwidth



BBR’s Two Goals
• Sending rate =  bottleneck bandwidth
• Data in flight = BDP = RTProp * bottleneck bandwidth

• High-level technique:
• Estimate bottleneck bandwidth
• Estimate RTProp
• Pace sending to bottleneck bandwidth
• Run experiments to test if bottleneck bandwidth or RTProp change

• Still constrain overall data in flight to be BDP



Estimating Bottleneck Bandwidth
• Take a measurement between every send and ack:
• bandwidth_estimate = ∆delivered / ∆t

• Can never send faster than bottleneck bandwidth

• Bottleneck bandwidth = max estimate in last N seconds
• (N = 10)



Estimating Round Trip Propagation Delay 

• Take a measurement between every send and ack:
• RTprop_estimate = time_at_ack – time_at_send

• Can never receive ack faster than Rtprop

• RTprop = min estimate in last N seconds
• (N = 10)



Pacing Sending
• Goal: send at bottleneck bandwidth rate

• Send a packet every packet_size / bottleneck bandwidth
• e.g., 1500B/40Mbps = 1500B/5MBps = 1 packet / 300µs

if (now >= nextSendTime)

…

nextSendTime = now + packet.size / BtlBw_estimate



Run Experiments
• Is there more bandwidth available?
• Try sending extra data

• Same time to ack => no queue => extra bandwidth available! 
• Longer to ack => queue grew => no extra bandwidth available

• Compensate by sending less data to keep inflight data < BDP
• Experiment increases queue, compensation drains them

• Is RTprop shorter?
• Try sending very little data to avoid queuing



BBR High Level Review
• Estimate bottleneck bandwidth with max estimate
• Estimate RTProp with min estimate
• Pace sending to bottleneck bandwidth rate
• Run experiments to test if bottleneck bandwidth or RTProp change
• Still constrain overall data in flight to be BDP



BBR’s Latency? [fig 5 from queue paper]



BBR’s Throughput? [fig 5 from queue paper]



BBR in Practice
• In Linux since 2016

• sysctl net.ipv4.tcp_congestion_control=bbr

• BBR is used for Google’s internal traffic
• Inside a datacenter
• Between Google datacenters

• BBR is used for Google’s external traffic
• Google.com, YouTube

• BBR has some adoption outside Google
• 8% of most popular 20K websites [Mishra et al. SIGCOMM ‘24]

• e.g., Amazon.com, primevideo



BBR Conclusions
• Congestion is inevitable

• Internet does not reserve resources in advance
• BBR in TCP estimates the most traffic it can send without increasing congestion

• Runs experiments to push the envelope

• Congestion can be handled
• BBR sender limits traffic to the bandwidth delay product (congestion window)

• Running in practice!
•
• A
• a

19




