BBR Congestion Control

COS 316: Principles of Computer System Design Lecture 9

Wyatt Lloyd & Rob Fish

TCP "Sawtooth"

Window

TCP Sawtooth Misses the Mark

Window

Can We Do Better?

- Yes! Researchers in academia and industry actively working on it for 35+ years and still going!
- 100s of congestion control schemes proposed...
- A couple of papers at every SIGCOMM...

Today: BBR Congestion Control

BBR: <u>bottleneck bandwidth and round-trip propagation time</u>

Bottleneck Bandwidth

Bottleneck link

Send at > Bottleneck Bandwidth

Bandwidth Delay Product (BDP)

Bandwidth Delay Product = RTProp * Bottleneck Bandwidth

Data in Flight vs. Bandwidth Delay Product

- Data in flight = un-acknowledged data
- If data in flight > bandwidth delay product?
 - Queue before bottleneck grows
- If data in flight < bandwidth delay product?
 - Can't fill bottleneck at all time => underutilization
- Goal: Data in flight = BDP = RTProp * bottleneck bandwidth

BBR's Two Goals

- Sending rate = bottleneck bandwidth
- Data in flight = BDP = RTProp * bottleneck bandwidth
- High-level technique:
 - Estimate bottleneck bandwidth
 - Estimate RTProp
 - Pace sending to bottleneck bandwidth
 - Run experiments to test if bottleneck bandwidth or RTProp change
 - Still constrain overall data in flight to be BDP

Estimating Bottleneck Bandwidth

- Take a measurement between every send and ack:
 bandwidth estimate = Δdelivered / Δt
- Can never send faster than bottleneck bandwidth
- Bottleneck bandwidth = max estimate in last N seconds
 (N = 10)

Estimating Round Trip Propagation Delay

- Take a measurement between every send and ack:
 - RTprop_estimate = time_at_ack time_at_send
- Can never receive ack faster than Rtprop
- RTprop = min estimate in last N seconds
 (N = 10)

Pacing Sending

- Goal: send at bottleneck bandwidth rate
- Send a packet every packet_size / bottleneck bandwidth
 e.g., 1500B/40Mbps = 1500B/5MBps = 1 packet / 300µs

```
if (now >= nextSendTime)
```

...

```
nextSendTime = now + packet.size / BtlBw_estimate
```

Run Experiments

- Is there more bandwidth available?
 - Try sending extra data
 - Same time to ack => no queue => extra bandwidth available!
 - Longer to ack => queue grew => no extra bandwidth available
 - Compensate by sending less data to keep inflight data < BDP
 - Experiment increases queue, compensation drains them
- Is RTprop shorter?
 - Try sending very little data to avoid queuing

BBR High Level Review

- Estimate bottleneck bandwidth with max estimate
- Estimate RTProp with min estimate
- Pace sending to bottleneck bandwidth rate
- Run experiments to test if bottleneck bandwidth or RTProp change
 - Still constrain overall data in flight to be BDP

BBR's Latency? [fig 5 from queue paper]

FIGURE 5: FIRST 8 SECONDS OF 10-MBPS, 40-MS CUBIC AND BBR FLOWS

BBR's Throughput? [fig 5 from queue paper]

FIGURE 6: THROUGHPUTS OF 5 BBR FLOWS SHARING A BOTTLENECK

BBR in Practice

- In Linux since 2016
 - sysctl net.ipv4.tcp_congestion_control=bbr
- BBR is used for Google's internal traffic
 - Inside a datacenter
 - Between Google datacenters
- BBR is used for Google's external traffic
 - Google.com, YouTube
- BBR has some adoption outside Google
 - 8% of most popular 20K websites [Mishra et al. SIGCOMM '24]
 - e.g., Amazon.com, primevideo

BBR Conclusions

- Congestion is inevitable
 - Internet does not reserve resources in advance
 - BBR in TCP estimates the most traffic it can send without increasing congestion
 - Runs experiments to push the envelope
- Congestion can be handled
 - BBR sender limits traffic to the bandwidth delay product (congestion window)
- Running in practice!