
Congestion Control

COS 316: Principles of Computer System Design
Lecture 8

Wyatt Lloyd & Rob Fish

Congestion
• Best-effort network does not “block” calls
• So, they can easily become overloaded
• Congestion == “Load higher than capacity”

• Examples of congestion
• Link layer: Ethernet frame collisions
• Network layer: full IP packet buffers

• Excess packets are simply dropped
• And the sender can simply retransmit

2

queue

10 Gbps15 Gbps

Congestion Collapse
• Easily leads to congestion collapse
• Senders retransmit the lost packets
• Leading to even greater load
• … and even more packet loss

Load

Goodput
“congestion

collapse” Increase in load
that results in a
decrease in useful
work done.

3

Detect and Respond to Congestion

• What does the end host see?
• What can the end host change?

4

?

Detecting Congestion

•Network layer
•Observing end-to-end performance
• Packet delay or loss over the path

5

TCP Congestion Control

7

Congestion in a Drop-Tail FIFO Queue
• Access to the bandwidth: first-in first-out queue

• Packets transmitted in the order they arrive

8

✗

• Access to the buffer space: drop-tail queuing
– If the queue is full, drop the incoming packet

How it Looks to the End Host
• Delay: Packet experiences high delay
• Loss: Packet gets dropped along path

• How does TCP sender learn this?
• Delay: Round-trip time estimate
• Loss: Timeout and/or duplicate acknowledgments

✗

TCP Congestion Window
• Each TCP sender maintains a congestion window
• Max number of bytes to have in transit (not yet ACK’d)

• Limits the sending rate of traffic

|----------Window Size-----------|

<---Data ACK’d-| |-Data not OK to send yet --->Outstanding
Un-ack’d data

Data OK to send

Receiver Window vs. Congestion Window
• Flow control
• Keep a fast sender from overwhelming a slow receiver

• Congestion control
• Keep a set of senders from overloading the network

• Different concepts, but similar mechanisms
• TCP flow control: receiver window
• TCP congestion control: congestion window
• Sender TCP window = min { congestion window, receiver window }

TCP Sender Adjusts the Congestion Window

• Packet loss (fail!)
• Suspect an overutilized network (congestion)
• Pessimistically decrease the congestion window

• Packet delivery (succeed!)
• Suspect an underutilized network
• Optimistically increase the sending rate

• Always struggling to find the right rate
• Pro: avoids the need for explicit feedback
• Con: continually under-shooting and over-shooting

How Much Should the Sender Adapt?
• Additive increase (AI)

• Cautious to avoid triggering congestion
• On success of last window of data, increase congestion window by 1 packet

• Multiplicative decrease (MD)
• Aggressive to respond quickly to congestion
• On the loss of packet, divide congestion window in half

• Much quicker to slow down than speed up?
• Over-sized windows (causing loss) are much worse than under-sized

windows (causing lower throughput)

Leads to the TCP “Sawtooth”

14

Window

halved

Loss

Time

Sources of Poor TCP Performance
• The below conditions may primarily result in:

(A) Higher packet latency (B) Greater loss (C) Lower throughput

1.Larger buffers in routers

2.Smaller buffers in routers

3.Smaller buffers on end-hosts

4.Slow application receivers

15

TCP seeks “Fairness”

Fair and Efficient Use of a Resource
• Suppose 3 users share the bandwidth on a single link

• E.g., link has total of 30 Gbps

• What is a fair allocation of bandwidth?
• Suppose user demand is “elastic” (i.e., unlimited)
• Allocate each a 1/n share (e.g., 10 Gbps each)

• But, “equality” is not enough
• Which allocation is best: [5, 5, 5] or [18, 6, 6]?
• [5, 5, 5] is more “fair”, but [18, 6, 6] more efficient
• What about [5, 5, 5] vs. [22, 4, 4]?

Fair Use of a Single Resource
• What if some users have inelastic demand?

• E.g., 3 users where 1 user only wants 6 Gbps
• And the total link capacity is 30 Gbps

• Should we still do an “equal” allocation?
• E.g., [6, 6, 6]
• But that leaves 12 Gbps unused

• Should we allocate in proportion to demand?
• E.g., 1 user wants 6 Gbps, and 2 each want 20 Gbps
• Allocate [4, 13, 13]?

• Or, give the least demanding user all they want?
• E.g., allocate [6, 12, 12]?

Potential Goal: Max-Min Fairness
• The allocation must be “feasible”

• Total allocation should not exceed link capacity
• Can’t be any better for the ‘min’

• Any attempt to increase the allocation of one user
• ... necessarily decreases for another user with equal or lower allocation

• Benefit: Fully utilize a “bottlenecked” resource
• If demand exceeds capacity, the link is fully used

• How: Progressive filling algorithm
• Grow all rates until some users stop having demand
• Continue increasing all remaining rates until link is full

Resource Allocation Over Paths

• Maximum throughput: [30, 30, 0]
• Total throughput of 60, but user C starves

• Max-min fairness: [15, 15, 15]
• Equal allocation, but throughput of just 45

• Proportional fairness: [20, 20, 10]
• Balance trade-off between throughput and equality
• Throughput of 50, and penalize C for using 2 busy links

A B

C
Three users A, B, and C
Two 30 Gbps links

TCP Achieves a Notion of Fairness
• Effective utilization is not only goal
• We also want to be fair to various flows

• Simple definition: equal bandwidth shares
• N flows that each get 1/N of the bandwidth?

• But, what if flows traverse different paths?
• Result: bandwidth shared in proportion to RTT

22

Conclusions
• Congestion is inevitable

• Internet does not reserve resources in advance
• TCP actively tries to push the envelope

• Congestion can be handled
• TCP sender limits traffic to a congestion window
• Additive increase, multiplicative decrease

• Fairness
• TCP congestion control is a distributed algorithm that achieves “fairness”
• ... well, as long as TCP end-points don’t cheat!

24

