
Git’s Content
Addressable Storage

COS 316: Principles of Computer System Design
Lecture 5

Wyatt Lloyd & Rob Fish

Naming Module
• Naming Overview (today)

• Memory Naming
• OS, Security

• Unix File System Naming
• OS

• Git Naming
• OS, Distributed Systems

• Network Naming
• Networking

Application

Distributed Systems

Hardware

Network

Hardware

Network

Se
cu

rit
y

Se
cu

rit
y

OSOS

Today’s Goals
• Compare centralized vs distributed version control
• Compare location- vs content-based naming
• Learn specifics of git’s content-based naming
• Learn some specifics of git internals
• See more layering in action

Unix File System
• An example of “location-based” naming schemes:
• The block layer names blocks based on the order in which they

appear on disk
• The file layer names files based on where to find their blocks
• The inode number layer gives files names that correspond to their

block number or location within an inode table
• The absolute path name layer provides the location of the root

directory

Location-based naming scheme

Today: When do locations fall short
• UNIX File System takes a location-centric view of the data it

stores
• Point is: where on disk can I find this data I care about?

• When might this view be insufficient?
• Today: Git as a lens for:
• How location-based names fall short
• How content-based names can help

Version Control Overview

A Brief History of Version Control
• Local version control

• 1972: Source Code Control System (SCCS) developed by early UNIX developers
• 1982: Revision Control System (RCS) developed by GNU project

• Client/Server Centralized Version Control
• 1986: Concurrent Versions System (CVS) developed as front-end to RCS to

collaborate on Amsterdam Compiler Kit at Vrije University
• 2000: Subversion (SVN) a redesign of CVS widely used by open source projects

• Distributed Version Control
• 2000: BitKeeper developed to address Linux’s distributed and large community

development model
• 2005: Git & Mercurial developed concurrently to replace BitKeeper after BitMover

starts charging open source projects.

Centralized Version Control

Centralized Version Control
• Central server holds “canonical” version of each file
• Files committed and versioned independently
• Typically only one or a few checkouts of a file
• Conflicts between developers expected to be rare
• All versioning and conflict resolution mediated by the server
Main role: efficiently store versions of the same file and
coordinate updates to individual files.
UNIX file system is a pretty good match!

Centralized Version Control
Shortcomings…
• Are the set of files in the canonical version collectively valid?

• Not egalitarian: What if we don’t want just one “central” server?
• P2P collaboration, hierarchical, etc.

• What happens if the data on the central server is corrupted?

Distributed Version Control
• Two important differences from centralized:

1. No inherent “canonical” version
2. Unit of a commit is a complete source code tree

• Each “version” represents a state that some developer intended at some time
• Versioning files is incidental

Distributed
Version
Control

Distributed Version Control Workflow Ex

How would we do this with the UNIX file system?

• We need a simple way to succinctly name files, trees,
commits, etc. such that we can easily compare them.

• We need to efficiently store and transmit many versions of
source code tree. Most files in each version will be
unchanged.

The Content-based Address
• A succinct summary of the content
• that’s unique for different content
• and the same for the same content

• Cryptographic hash functions maps arbitrary size data to a fixed-sized
bit-string that is:
• Deterministic
• Computationally “hard” to generate a message that yields a specific hash value
• Computationally “hard” to find two messages with the same hash value
• Similar messages have dissimilar hashes

Git Layers
Layer Purpose a
Object Stores objects in a content-addressable store
Tree Organizes “blobs” into a directory-like hierarchy
Commit Versions the tree layer
Reference Provides human-readable names for trees, commits

Git Layers

Object Layer
• “Objects” are the basic storage unit in Git, like blocks in the UNIX file system

• All data is stored as objects

• Names:
• The SHA-1 hash of the object’s content: 40-byte string in hex (160-bits)

• aa8074278ed2c4803a2a545f277d1e0afe5039c3

• Values
• Blobs: similar to files
• Trees: similar to directories
• Commits: points to tree and previous commit

Object Layer
• Allocation
• Names “allocated” by taking the hash of the object content

• Lookup
• Git uses the UNIX file system to store objects on disk

• We need to translate to locations at some point
• Objects stored in a directory .git/objects
• Filename is the 40-byte hex string of the object’s name

Tree Layer

• Similar to, and modeled
after, directories in the UNIX
file system

• Provide hierarchy of trees
and blobs that can be
traversed using human-
meaningful names.

Tree Layer
• Names

• Human-readable strings, just like in UNIX directories

• Values
• Object name
• Object type
• Permissions (a subset of UNIX permissions)

• Allocation
• Names are supplied by the user, just like in UNIX
• Generally, git mirrors an actual directory structure

Tree Layer
• Lookup
• Trees stored as a list of entries, similar to directories

$ git cat-file -p 3914fbcc30ea8092034ca5ea4e6ebd0c887495df
100644 blob 96e87117fc618fc54a770bfc938405a29cca1fbb .gitignore
100644 blob 077b93358fba58cacc6acaf098baa317408aa16e Makefile
100644 blob 7addb405782f208c54f6d31182e173304ee117b9 README.md
040000 tree 303c20a830ce296d625fbf0fe4e4cd99fc33f3b1 http_router
040000 tree 85c17ff71ae5cfafcb1affebc4fbc1e8e67bd23c microblog-client
040000 tree a7dc7cfb0850fbfd4fcdf49310fd2e757cb42c08 microblog-server

Commit Layer
• The commit layer gives Git a way to express a version history

of the source code tree. Commit objects contain
• A reference to the tree
• Metadata about the tree (the author of this version, when it was

“committed”, a message describing the changes from the previous
version, etc…)
• A reference to the previous commit

Commit Layer
• Names
• The SHA-1 hash of the value

• Values
• Object name of the tree
• Object name of the parent commit(s)
• Author/committer name and e-mail, and date committed
• Message as a string

Commit Layer
• Allocation
• Names “allocated” by taking the hash of the object content

• Lookup
• Commit objects have a defined format such that each name has a

particular location in the object

Reference Layer
• Commits, trees, and blobs names not convenient for humans
• Can’t remember hashes
• Not useful for discovery
• Need some point of synchronization

• e.g., how do we know which is the most recent commit?

• References provide global, human readable names for objects

Reference Layer
• Names
• Human readable names: e.g., “master”, “wlloyd/wip”, “HEAD”

• Values
• A commit name

Reference Layer
• Allocation
• Reference names are assigned and managed by users
• Some standard reference names by convention:

• master: refers to the most recent “canonical” version of the source code
• HEAD: refers to the most recently committed tree on the local repository
• origin/*: refers to a reference on the “origin” repository, where this repository was

cloned from

• Lookup
• Stored as UNIX files in a special subdirectory of the .git directory
• Each reference is a file containing the name of the object they refer to

Contrasting Location-based Names
& Content-based Names

Layers of Names
Both systems we looked at use layers of simple naming schemes

• Makes reasoning easier
• UNIX File System

• Blocks, files, inode numbers, directories, absolute path
• Git

• Objects, blobs, trees, references
• Allow extensibility at multiple levels

• Can re-use block layer for other storage systems, e.g., databases
• Allows portability at multiple levels

• Can port files & directories to non-block storage

Economy of mechanism
• Both systems we looked at reuse mechanisms where

possible

• UNIX file system
• Stores everything in blocks: inodes, file data, file system metadata
• Reuses inodes for files and directories

• Git
• Stores everything in objects: blobs, trees, commits
• Single naming allocation scheme: secure hash function

Naming Design Trade-offs
Location-based Content-based

Necessary? Yes! No
Discovery Easy Hard
Decentralized No Yes
Integrity Hard Easy
Transactions Hard Easy

Summary
• Compared centralized vs distributed version control
• Compared location- vs content-based naming
• Learned specifics of git’s content-based naming
• Learned some specifics of git internals
• Saw more layering in action

