UNIX File System Naming

B vET | Nov (M
TES | TAM
EN [TVM

A

COS 316: Principles of Computer System Design
Lecture 4

Wyatt Lloyd & Rob Fish

Naming Module

* Naming Overview (today)
 Memory Naming
» OS, Security

* Unix File System Naming
« OS

« Git Naming
* OS, Distributed Systems

* Network Naming
* Networking

Application

Hardware

Hardware

Today’s Goals

* Learn specifics of the Unix File System

» See 5 examples of naming within it

* Reason about portability, generality, and isolation
» Get first exposure to layering

Unix File System

* Unix and its descendants around since 1970s
« (Named by Prof. Brian Kernighan)

 Descendants:
e Linux
« BSD
« Mac OS X
« iOS
 Android

Unix File System

* The UNIX operating system’s API| has remained relevant
since the 1970s

* From “mini”-computers to todays rack-scale servers and
personal devices alike!

* The UNIX file system has been even more influential and
constant

Why File Systems?

« Common themes in UNIX systems:
« User oriented
* Multiple applications
* Time sharing

* Need a way to store and organize persistent data

* Key question: how to let users organize and locate their
data on persistent storage?

Key Abstraction

* Data is organized into “files”
A linear array of bytes of arbitrary length

« Meta data about the bytes (modification and creation time, owner,
permissions)

* Files organized into “directories”
* A list of other files or sub-directories

« Common root directory named "/"

UNIX File System Layers

Layer Purpose
Block organizes persistent storage into fix-sized blocks
File organizes blocks into arbitrary-length files

Inode number
Directory
Absolute path name

names files as uniquely numbered inodes
human-readable names for files in a directory
a global root directory

UNIX File System Layers

* For each of these we’ll look at:
« Values
 Names
* Allocation mechanism
 Lookup mechanism

 And ask:

 How portable?
 How general?
« Can it isolate?

Block Layer

* Underlying resources differ
* Tape has contiguous magnetic stripe
* Disk has plates and arms

 NAND flash (SSDs) even more complex to deal with wear leveling,
data striping...

* Values: fix-sized “blocks” of contiguous persistent memory

 Names: integer block numbers

Block Layer: Allocation

« Hardware specific, but let’s just pretend our storage device is
In-memory

typedef block uint8_t[4096]

struct device {
block blocks[N]
}

Block Layer: Allocation

» Super Block: a special block number to keep a bitmap of
occupied blocks

Superblock Free Block Map 34 | 35 | 36 | 37

Block Layer: Lookup

struct device {
block blocks[N]

def (device *device) block number to_block(int32 t block_num) returns bloc!

return device.blocks[block num + 1]

Block Layer: Portable? General? Isolation?

 How portable?
» Can be (and has been!) implemented efficiently for most persistent storage media
« Tape, HDDs, floppy disks, ... even network attached storage!

« SSDs not a great fit due to need for wear leveling
* Flash controllers are complex and obscure computers that hide flash behind block interface

 How general?
 Lose some expressiveness: block size, performance characteristics
* But not much

* Isolation?
« Block numbers are global, they always represent the same physical location

File Layer

* A file is a linear array of bytes of arbitrary length:
 May span multiple blocks
 May grow or shrink over time

 How do we keep track of which blocks belong to which file?

 Values: arrays of bytes up to size N
« Names: References to inode structs

* Allocation: reuse block layer to store new inode structs in
blocks

File layer: Lookup

struct inode {
int32_t block numbers[N];
int32 t filesize

+

def (inode *inode) offset_to _block(int offset) returns block:
block_idx = offset / BLOCKSIZE
block_num = inode.block numbers[block idx]

return device.block_number to_block[block num]

File layer: Portable? General? Isolation?

 How portable?
« Can implement for any block device ...

 How general?
* Applications completely lose locality information

* Fine for most applications, but not for specific use cases, e.g.,
databases

* Isolation?
* A name always refers to particular data, so no inherent isolation

Inode number layer
« Names: Inode nhumbers
* Values: Inode structs

 Allocation
* Can re-use block allocation and block numbers

* Lookup
* if re-using block allocation:
 inode number_to_inode = block_number_to_block

Recap so far

 Name files by inode number (e.g., 43982), translate to inode structs

. Idnq(des translate to a list of ordered block numbers that store the file’s
ata

 Block numbers translate to blocks—the actual file data

« Given an inode number, we can get an ordered byte array.

 Remaining issues:
* Numbers are convenient names for machines, but not for humans
« How do we discover files?

Directory layer

» Structure files into collections called “directories”. Each file in a
directory gets a human readable name—i.e., an (almost) arbitrary
ASCII string

 Names: Human readable names within a “directory”
* resume.docx
e a.out

 profile.jpg
* Values: Inode numbers

* Directories can contain files as well as other sub-directories

Directory layer: Allocation

struct dirent {
char [MAX NAME LENGTH] filename;

int inode_number;

+

struct inode {

bool directory;

+

typedef directory inode;

Directory layer: Lookup

def (dir *directory) lookup(string filename) returns inode_number:
for block_num in dir.block_numbers:
directory = block_number_to_block(block_num) as struct dirent[]
file_inode = directory.find(|dirent| dirent.filename == filename)
if file inode >= O:
return file inode

return -1

Directory layer: Lookup

Paths name files by joining directory and file names with /: path/to/file.txt

def (dir *directory) lookup(string path) returns inode_number:
let (next_path, rest) = path.split_first('/")
for block num in dir.block_numbers:
directory = block_number_to_block(block_num) as struct dirent[]
if inode = directory.find(|dirent| dirent.filename == filename):
if rest.empty():
return inode
else
next _dir = block number to block(inode)
if !'next_dir.directory: panic("Uh oh, can't traverse a file")
return next_dir.lookup(rest as directory)

return -1

Directory layer: Portable? General? Isolation?

* How portable?
« Can implement for any inode & file layer—simply uses file layer for storage

 How general?
« Assumes a hierarchical structure to file system.

» Works poorly for relational or structured data
» “please find all JSON files with the field foo”

* Isolation?
 All lookups are relative to some base directory!
« Can isolate applications by giving them different starting points
* $: man chroot

Absolute path name layer

« Each running UNIX program has a “working directory” (wd)
* File lookups are relative to the wd

 What if we want to name files outside of our wd’s directory
hierarchy?

* E.g., share files between users
« What if we want globally meaningful paths?

Absolute path name layer

e Solution:

« Special name /, hardcoded to a specific inode number

 All directories are part of a global file system tree rooted at /
» the “root” directory

 Names: One name, /
 Values: Hardcoded inode number, e.g., 2

 Allocation: nil
 Lookup: 1 — 2

Naming in UNIX File System: Recap

1.

2R

Absolute paths translate to paths starting from the “root”
directory

Paths translate to recursive lookup for human-readable
nhames in each directory

Human readable names translate to inode numbers

Inode numbers translate to inode structs

Inode structs translate to an ordered list of block numbers
Block numbers translate to blocks —the actual file data

Summary

» Learned specifics of the Unix File System

« Saw 5 examples of naming within it

 Reasoned about portability, generality, and isolation
» Got first exposure to layering

