
Introduction to Naming

COS 316: Principles of Computer System Design
Lecture 3

Wyatt Lloyd & Rob Fish



Naming Module
• Naming Overview (today)

• Memory Naming
• OS, Security

• Unix File System Naming
• OS

• Git Naming
• OS, Distributed Systems

• Network Naming
• Networking

Application

Distributed Systems

Hardware

Network

Hardware

Network

Se
cu

rit
y

Se
cu

rit
y

OSOS



Application: “I would like to send data to the Internet host, please.” 
System: “Which host?”
Application: “Oh uh … cs.princeton.edu”

3



Application: “I would like to send data to the Internet host, please.” 
System: “Which host?”
Application: “Oh uh … cs.princeton.edu”

cs.princeton.edu is the name for an IP address!

3



Application: “Can I please get the data?”
System: “You’re gonna have to be more specific.”
Application: “The data in /home/wlloyd/316-revamp.txt”

4



Application: “Can I please get the data?”
System: “You’re gonna have to be more specific.”
Application: “The data in /home/wlloyd/316-revamp.txt”

/home/wlloyd/316-revamp.txt is the name for a bunch of sectors on disk!

4



Application: “What is the sum of two numbers?”
System: “I really need to know which numbers…”
Application: “Fine, fine, fine: the ones in registers r1 and r2.”

5



Application: “What is the sum of two numbers?”
System: “I really need to know which numbers…”
Application: “Fine, fine, fine: the ones in registers r1 and r2.”

r1 and r2 are names for words of memory residing in CPU registers!

5



Whenever an application uses a resource, it must somehow name it.



Agenda
• Why does it matter?
• An intellectual framework for naming
• Naming memory



Why does naming matter?
• Naming is the most central design

choice in the interface of a system

• Recall: Systems provide an interface to underlying resources
• Mediate access to shared resources
• Isolate applications
• Abstract complexity
• Abstract differences in implementation

• We always need some way for applications (or other clients) 
to name those resources



Why does naming matter?
• The names systems use to expose underlying resources 

affects every other aspect of the system:
• Performance of the system implementation
• Application performance and flexibility
• Security & Isolation
• Portability
• Resource sharing and concurrency



Naming Scheme Framework
• Values: What is it that we’re naming?

• Disk sectors?
• Network nodes?
• Users?

• Names: What’s the format of a name?
• Alphanumeric strings up to 32 characters
• Non-zero integers
• 128-bit numbers

• Allocation mechanism: How does the system create new names and values?

• Lookup mechanism: How does the system map from names to values?



Let’s Name Memory

Image from: https://commons.wikimedia.org/wiki/File:DRAM_DDR2_512.jpg



Naming Memory #1: Geometric memory
• Values: Words of memory

• Names: DIMM 1; BANK 3; ROW 1200; COLUMN 4;
• Specifies the precise location of the word(s)

• Allocation: n/a
• Or install more memory

• Lookup mechanism: direct in simple hardware



Naming Memory #2: Physical memory
• Values: Words of memory

• Names: 0xDEADBEEF 
• Integer up to the maximum size of memory in words

• Allocation: n/a
• Or install more memory

• Lookup mechanism: direct in simple hardware



Comparing Geometric and Physical
• Performance of the system implementation
• Application performance and flexibility
• Security & Isolation
• Portability
• Resource sharing and concurrency

• All essentially the same
• But physical is more portable than geometric
• (Geometric is not real for memory, dominated by physical)



Naming Memory #3: Virtual memory
• Values: (type, address) 

• Type is a type of storage; address is storage specific
• (Memory, memory address)
• (File, file name and offset in file)
• (Remote memory, remote node and memory address)
• …

• Names: 64 bit address & process ID
• E.g., (0xDEADBEEF, 1337)
• process ID is typically implicit

• Allocation: mmap

• a



mmap system call
• void *mmap(void *addr, size_t length) (simplified)

• Application chooses an unused name: an address not yet allocated for it
• (Or can pass in NULL if it doesn’t care)

• Kernel (the system!)
• keeps a list of unused physical 4KB memory pages
• allocates “value” by removing a physical page from the list
• adds mapping between virtual address and physical to the application’s “page table”

• in-memory data structure understood by virtual memory hardware that maps virtual addresses to 
physical addresses



Virtual memory lookup
• Lookup virtual address in “page table”
• Stored in memory (where it is “pinned”)
• OS maintains one page table per process
• Page table maps virtual address to physical memory address

OR file and location OR remote machine and memory address

• Performance implications?



Naming Memory #3: Virtual memory
• Values: (type, address) 

• Type is a type of storage; address is storage specific
• (Memory, memory address)
• (File, file name and offset in file)
• (Remote memory, remote node and memory address)
• …

• Names: 64 bit address & process ID
• E.g., (0xDEADBEEF, 1337)
• process ID is typically implicit

• Allocation: mmap

• Lookup: TLB, page table, disk, …



Virtual memory lookup
• Lookup virtual address in TLB (Translation lookaside buffer)
• Small hardware implemented cache
• Hit à translates to physical address

• TLB miss goes to “page table”
• Stored in memory (where it is “pinned”)
• OS maintains one page table per process
• Page table maps virtual address to physical memory address

OR file and location OR remote machine and memory address



Comparing Physical and Virtual
• Performance of the system implementation
• Application performance
• Application flexibility
• Security (Isolation)
• Effectiveness of caching
• Resource sharing and concurrency
• Portability

• Physical
• Physical
• Virtual
• Virtual
• Physical
• ~Same
• ~Same

Winner?



What type of memory naming to use?
1. On your laptop

2. For a tiny power constrained microcontroller 

3. For a supercomputer that runs one massive simulation at a time

4. On your phone



Naming Memory #4: Original UNIX 
• Swap out all memory for one process at a time
• Allows using physical addresses with isolation!
• Simple and efficient to implement in hardware
• Can’t run applications in parallel
• Expensive to switch between applications



Naming Memory #5: Segmentation
• Virtual addresses are low-order bits of physical address + 

segment register
• Relatively simple hardware

• (just concatenate segment register and virtual address)
• Isolates concurrent applications using names
• Much coarser grain: all virtual memory must be contiguous in RAM
• Can’t share memory between applications



Summary
• Names are the way systems expose resources to applications

• Central to designing and understanding systems
• Performance
• Security
• Caching
• Resource sharing

• Framework for naming:
• Values
• Names
• Allocation mechanism
• Lookup mechanism




