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• Today: Systems!

• Next time: Course Overview, Syllabus, …



Example Systems
• Operating system (OS) kernel
• The Internet
• Database
• Distributed file system
• Web framework
• Game engine



What is a System?
• Provides an interface to underlying resources
• Mediates access to shared resources
• Isolates applications
• Abstracts complexity
• Abstracts differences in implementation



Example System: OS Kernel
• Interface: system calls
• Underlying resources: hardware (CPU, memory, network, disk)
• Isolation: Firefox, terminal, zoom, … don’t worry about each other
• Abstraction: Collection of system calls
• Instead of specific protocols for using specific devices
• Don’t need to rewrite Firefox to display on new monitors, or save to new 

disks, or …
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Systems Stack (Firefox)
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Systems Stack (Firefox to Wikipedia)
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So Many Systems…

[Slide from Kaushik Veeraraghavan Talk’s on Kraken at OSDI ‘16]



Systems Are Everywhere!
• People use applications

• Applications are built on systems
• On systems on systems on systems…

• If you’re building applications
• Useful to understanding underlying systems

• What could be causing X?
• Why can’t they do Y?
• What can I trust Z to do or not?

• If you’re building systems☺
• That’s what this is all about!
• Useful to understanding your underlying systems
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Why do we build systems?

• Sharing: Mediates access to shared resources
• Portability: Abstract differences in underlying implementations
• Safety: Isolate resources and other applications from faulty apps
• Abstraction: Make complex resources easier to use



Why Are Systems Challenging? Part-1a
• Correctness
• Incorrect system => incorrect applications
• Correctly implement interface’s guarantees

• Performance
• Slow system => slow applications
• Make system fast enough

• Security
• Insecure system => insecure applications
• Build security into the system



Why Are Systems Challenging? Part-1b
• Distributed storage system that keeps data forever (e.g., videos)

• Correctness
• Accurately retain data forever. Really delete data on deletes.

• Performance
• Fast and highly concurrent.

• Security
• Only allow authorized users to retrieve data



Why Are Systems Challenging? Part-2a
• How general should an interface be?
• More general => supports more application-level functionality
• Less general => easier to implement, easier correctness,

better performance, easier security

• How portable should an interface be?
• More portable => supports more underlying resources
• Less portable => …

• Design tradeoffs!



Why Are Systems Challenging? Part-2b
• Distributed cache that provides fast access to popular data

• How general should an interface be?
• Read(key)
• Write(key, value)
• Read_transaction(<keys>)
• Write_transaction(<keys>,<values>)
• Read_and_write_transaction(<read_keys>, <write_keys>,<values>)
• …

• Design tradeoffs!



Why Are Systems Challenging? Part-2c
• Distributed cache that provides fast access to popular data

• How portable should an interface be?
• Cache in DRAM
• Cache on SSD
• Cache on NVM
• Cache on HDD
• …

• Design tradeoffs!



General vs Portable Interfaces
• Cache A:
• Read, Write on DRAM, SSD, NVM, HDD

• Cache B:
• Read, Write, Read Transaction, Write Transaction

on SSD

• Which cache is more general? More portable?

• PL Example: Javascript vs Assembly?



Systems We Will Cover In This Class
• Distributed Systems

• Networking

• Operating Systems

• Security
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Let’s Build a Netflix

• Video storage
• Video encoding
• Video delivery over network
• User authentication
• Stream authorization
• Metadata indexer
• Search & recommendations
• Comments/reviews
• ...



Let’s Build a [mini]-Netflix

• How many users? ~5
• Can everyone access everything? Yes

• How many movies? ~100
• How large are movies? ~20GB/hour x ~2 hours = ~40GB/movie
• Max simultaneous streams? ~2
• Lots of metadata to search? No! Just 100 movies, a tiny list



Let’s Build a [mini]-Netflix

• 5 users
• 100 movies
• 40GB per

movie
• <=2 streams

• How much storage?
• 100 * 40GB = ~4TB

• How much bandwidth?
• 20GB / 3600 * 2 = ~91Mbps
• Less with encoding

• How much CPU?
• May be best to encode each

stream on-the-fly
• Only 2 streams, so a few cores at

full capacity should work



Let’s Build a [mini]-Netflix

• ~4TB storage
• ~91Mbps max

bandwidth
• ~8 cores
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Let’s Build a [large]-Netflix

• How many users? millions
• Can everyone access everything? No

• How many movies? ~1000s
• Max simultaneous streams? ~1000s
• Lots of metadata to search? Yes! Millions of movies



Why Do I Love Systems?!
• Work on the “hard” problems, so applications don’t have to

• Correctness as a puzzle: reason through all corner cases

• Performance is a different type of puzzle:
• Where are bottlenecks, how to speed them up?

• Art of reasoning about tradeoffs: e.g., Interface vs. Performance

• Multiplicative impact: improving systems improves all apps built
on them



Summary
• Systems abstract underlying resources

• Systems are everywhere

• Systems are challenging and interesting
and cool

• This class is about systems: details next
lecture
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