Intro: What is a System?

A

COS 316: Principles of Computer System Design

Lecture 1

Wyatt Lloyd & Rob Fish

* Today: Systems!

* Next time: Course Overview, Syllabus, ...

Example Systems

» Operating system (OS) kernel
* The Internet

» Database

* Distributed file system

 Web framework

« Game engine

What is a System?

* Provides an interface to underlying resources
* Mediates access to shared resources

* |solates applications

» Abstracts complexity

» Abstracts differences in implementation

Example System: OS Kernel

* Interface: system calls
» Underlying resources: hardware (CPU, memory, network, disk)

* |[solation: Firefox, terminal, zoom, ... don’t worry about each other

* Abstraction: Collection of system calls
* Instead of specific protocols for using specific devices
* Don’t need to rewrite Firefox to display on new monitors, or save to new
disks, or ...

Systems Stack (terminal)

Application

Hardware

Systems Stack (Firefox)

[Lavout engine] [Js v]
Application
[Database]

Hardware

Systems Stack (Firefox to Wikipedia)

Application

Application

Hardware Hardware Hardware

S0 Many Systems...
Each user request touches hundreds of systems

((Laser]

(.
.\ '

[Slide from Kaushik Veeraraghavan Talk’s on Kraken at OSDI ‘16]

Systems Are Everywhere!

* People use applications

» Applications are built on systems
* On systems on systems on systems...

* If you’re building applications
« Useful to understanding underlying systems

« What could be causing X?
* Why can’t they do Y?
 What can | trust Z to do or not?

» If you’re building systems ©
« That’s what this is all about!
» Useful to understanding your underlying systems

Why do we build systems?

« Sharing: Mediates access to shared resources

* Portability: Abstract differences in underlying implementations

« Safety: Isolate resources and other applications from faulty apps
» Abstraction: Make complex resources easier to use

Why Are Systems Challenging? Part-1a

 Correctness

* Incorrect system => incorrect applications
« Correctly implement interface’s guarantees

 Performance

» Slow system => slow applications
* Make system fast enough

« Security

* Insecure system => insecure applications
 Build security into the system

Why Are Systems Challenging? Part-1b

* Distributed storage system that keeps data forever (e.g., videos)

» Correctness
* Accurately retain data forever. Really delete data on deletes.

* Performance
* Fast and highly concurrent.

« Security
* Only allow authorized users to retrieve data

Why Are Systems Challenging? Part-2a

 How general should an interface be?

* More general => supports more application-level functionality
* Less general => easier to implement, easier correctness,
better performance, easier security

 How portable should an interface be?
* More portable => supports more underlying resources
* Less portable => ...

* Design tradeoffs!

Why Are Systems Challenging? Part-2b

 Distributed cache that provides fast access to popular data

 How general should an interface be?
* Read(key)
* Write(key, value)
« Read_transaction(<keys>)
* Write_transaction(<keys>,<values>)
 Read_and_write_transaction(<read_keys>, <write_keys>,<values>)

* Design tradeoffs!

Why Are Systems Challenging? Part-2c

 Distributed cache that provides fast access to popular data

 How portable should an interface be?
 Cache in DRAM
« Cache on SSD
« Cache on NVM
« Cache on HDD

* Design tradeoffs!

General vs Portable Interfaces

« Cache A:
* Read, Write on DRAM, SSD, NVM, HDD

e Cache B:

 Read, Write, Read Transaction, Write Transaction
on SSD

* Which cache is more general? More portable?

« PL Example: Javascript vs Assembly?

Systems We Will Cover In This Class

Application * Distributed Systems

* Networking

» Operating Systems

* Security
Hardware Hardware

Let’s Build a Netflix

. Video storage

- Video encoding

- Video delivery over network
. User authentication

. Stream authorization

. Metadata indexer

. Search & recommendations
. Comments/reviews

Let’s Build a [mini]-Netflix

. How many users? ~5
- Can everyone access everything? Yes

. How many movies? ~100

. How large are movies? ~20GB/hour x ~2 hours = ~40GB/movie
. Max simultaneous streams? ~2

. Lots of metadata to search? No! Just 100 movies, a tiny list

Let’s Build a [mini]-Netflix

5 users
100 movies

40GB per
movie

<=2 streams

How much storage?
100 *40GB = ~4TB

How much bandwidth?

20GB /3600 * 2 = ~91Mbps
Less with encoding

How much CPU?
May be best to encode each
stream on-the-fly

Only 2 streams, so a few cores at
full capacity should work

Let’s Build a [mini]-Netflix

. ~4TB storage

= . ~91Mbps max
bandwidth

. ~8 cores

Hardware

Let’s Build a [large]-Netflix

. How many users? millions
- Can everyone access everything? No

. How many movies? ~1000s
. Max simultaneous streams? ~1000s
. Lots of metadata to search? Yes! Millions of movies

Why Do | Love Systems?!

 Work on the “hard” problems, so applications don’t have to
» Correctness as a puzzle: reason through all corner cases

* Performance is a different type of puzzle:
 Where are bottlenecks, how to speed them up?

* Art of reasoning about tradeoffs: e.g., Interface vs. Performance

* Multiplicative impact: improving systems improves all apps built
on them

Summary

« Systems abstract underlying resources

» Systems are everywhere

« Systems are challenging and interesting
and cool

* This class Is about systems: details next
lecture

