
Intro: What is a System?

COS 316: Principles of Computer System Design
Lecture 1

Wyatt Lloyd & Rob Fish



• Today: Systems!

• Next time: Course Overview, Syllabus, …



Example Systems
• Operating system (OS) kernel
• The Internet
• Database
• Distributed file system
• Web framework
• Game engine



What is a System?
• Provides an interface to underlying resources
• Mediates access to shared resources
• Isolates applications
• Abstracts complexity
• Abstracts differences in implementation



Example System: OS Kernel
• Interface: system calls
• Underlying resources: hardware (CPU, memory, network, disk)
• Isolation: Firefox, terminal, zoom, … don’t worry about each other
• Abstraction: Collection of system calls
• Instead of specific protocols for using specific devices
• Don’t need to rewrite Firefox to display on new monitors, or save to new 

disks, or …



Systems Stack (terminal)

Hardware

O
S

Application
Filesystem

TTY



Systems Stack (Firefox)

Hardware

O
S

Application

FilesystemGraphics

Window
manager

Network
Scheduler

Layout engine JS VM

Database



Systems Stack (Firefox to Wikipedia)

Internet

Application

Network
OS

Hardware

Application

Distributed Systems

OS
Network

OS
Network

FS FS

Hardware Hardware



So Many Systems…

[Slide from Kaushik Veeraraghavan Talk’s on Kraken at OSDI ‘16]



Systems Are Everywhere!
• People use applications

• Applications are built on systems
• On systems on systems on systems…

• If you’re building applications
• Useful to understanding underlying systems

• What could be causing X?
• Why can’t they do Y?
• What can I trust Z to do or not?

• If you’re building systems☺
• That’s what this is all about!
• Useful to understanding your underlying systems

Web
Server

Network
OS



Why do we build systems?

• Sharing: Mediates access to shared resources
• Portability: Abstract differences in underlying implementations
• Safety: Isolate resources and other applications from faulty apps
• Abstraction: Make complex resources easier to use



Why Are Systems Challenging? Part-1a
• Correctness
• Incorrect system => incorrect applications
• Correctly implement interface’s guarantees

• Performance
• Slow system => slow applications
• Make system fast enough

• Security
• Insecure system => insecure applications
• Build security into the system



Why Are Systems Challenging? Part-1b
• Distributed storage system that keeps data forever (e.g., videos)

• Correctness
• Accurately retain data forever. Really delete data on deletes.

• Performance
• Fast and highly concurrent.

• Security
• Only allow authorized users to retrieve data



Why Are Systems Challenging? Part-2a
• How general should an interface be?
• More general => supports more application-level functionality
• Less general => easier to implement, easier correctness,

better performance, easier security

• How portable should an interface be?
• More portable => supports more underlying resources
• Less portable => …

• Design tradeoffs!



Why Are Systems Challenging? Part-2b
• Distributed cache that provides fast access to popular data

• How general should an interface be?
• Read(key)
• Write(key, value)
• Read_transaction(<keys>)
• Write_transaction(<keys>,<values>)
• Read_and_write_transaction(<read_keys>, <write_keys>,<values>)
• …

• Design tradeoffs!



Why Are Systems Challenging? Part-2c
• Distributed cache that provides fast access to popular data

• How portable should an interface be?
• Cache in DRAM
• Cache on SSD
• Cache on NVM
• Cache on HDD
• …

• Design tradeoffs!



General vs Portable Interfaces
• Cache A:
• Read, Write on DRAM, SSD, NVM, HDD

• Cache B:
• Read, Write, Read Transaction, Write Transaction

on SSD

• Which cache is more general? More portable?

• PL Example: Javascript vs Assembly?



Systems We Will Cover In This Class
• Distributed Systems

• Networking

• Operating Systems

• Security

Application

Distributed Systems

Hardware

Network

Hardware

Network

Se
cu

rit
y

Se
cu

rit
y

OSOS



Let’s Build a Netflix

• Video storage
• Video encoding
• Video delivery over network
• User authentication
• Stream authorization
• Metadata indexer
• Search & recommendations
• Comments/reviews
• ...



Let’s Build a [mini]-Netflix

• How many users? ~5
• Can everyone access everything? Yes

• How many movies? ~100
• How large are movies? ~20GB/hour x ~2 hours = ~40GB/movie
• Max simultaneous streams? ~2
• Lots of metadata to search? No! Just 100 movies, a tiny list



Let’s Build a [mini]-Netflix

• 5 users
• 100 movies
• 40GB per

movie
• <=2 streams

• How much storage?
• 100 * 40GB = ~4TB

• How much bandwidth?
• 20GB / 3600 * 2 = ~91Mbps
• Less with encoding

• How much CPU?
• May be best to encode each

stream on-the-fly
• Only 2 streams, so a few cores at

full capacity should work



Let’s Build a [mini]-Netflix

• ~4TB storage
• ~91Mbps max

bandwidth
• ~8 cores

Hardware

O
S

Application

Filesystem

Scheduler

Network

DatabaseAuth.

Encoder Video
files



Let’s Build a [large]-Netflix

• How many users? millions
• Can everyone access everything? No

• How many movies? ~1000s
• Max simultaneous streams? ~1000s
• Lots of metadata to search? Yes! Millions of movies



Why Do I Love Systems?!
• Work on the “hard” problems, so applications don’t have to

• Correctness as a puzzle: reason through all corner cases

• Performance is a different type of puzzle:
• Where are bottlenecks, how to speed them up?

• Art of reasoning about tradeoffs: e.g., Interface vs. Performance

• Multiplicative impact: improving systems improves all apps built
on them



Summary
• Systems abstract underlying resources

• Systems are everywhere

• Systems are challenging and interesting
and cool

• This class is about systems: details next
lecture

Application

Distributed Systems

Hardware

Network

Hardware

Network

Se
cu

rit
y

Se
cu

rit
y

OSOS




