Precept Outline

- Review of Lectures 17 and 18:
	- **–** Minimum Spanning Trees
	- **–** Shortest Paths
	- **–** Algorithm Design

A. Review: MSTs and Shortest Paths

Your preceptor will briefly review key points of this week's lectures.

B. Dorm Rooms and Routers

A college has just unveiled a brand-new dorm facility with n rooms. They need to make sure all of them have an internet connection (of course), and are looking for the most cost-effective way to do so. Room number i has internet access if either of the following is true:

- \cdot There is a router installed in room i .
- Room i is connected by a fiber path to a room j which has internet access.

Installing a router in room i costs $r_i > 0$, and putting down fiber between rooms i and j costs $f_{ij} > 0$.

The goal of this problem is to determine in which rooms to install a router, and in which pair of rooms to connect together with fiber, so as to minimize the total cost.

Formulate this as a *minimum spanning tree problem*: define a graph $G = (V, E)$ with vertices $V =$ $\{1, 2, \ldots, n\}$ and edges/edge weights that depend on r_i and f_{ij} . You may use the example below to test your formulation.

Relevant Book Sections • Book chapters: 4.3 and 4.4

This instance contains 7 dorm rooms and 10 possible connections. The router installation costs are indicated in bold and parentheses; the fiber costs are given on the edges.

C. Shortest Teleport Path (Fall'14 Final)

Given an edge-weighted digraph G with non-negative edge weights, a source vertex s and a destination vertex t , find a shortest path from s to t where you are permitted to teleport across one edge for free. That is, the weight of a path is the sum of the weights of all but the largest edge weights in the path.

For example, in the edge-weighted digraph below, the shortest path from s to t is $s \to w \to t$ (with weight 11) but the shortest teleport path is $s \to u \to v \to t$ (with weight $1 + 2 + 0 = 3$).

A full solution should run in $O(E \log V)$ time and $O(V + E)$ extra space.

D. Optional bonus problems

Part 1: Shortest Tiger Path (Spring '23 Final)

Consider a graph G in which each vertex is colored black or orange. A *tiger path* is a path that contains exactly one edge whose endpoints have opposite colors.

Our goal is to solve the *shortest tiger path problem*: given an undirected unweighted graph G and two vertices s and t, find a tiger path between s and t that uses the fewest edges (or report that no such path exists).

For example, the shortest path between $s = 0$ and $t = 6$ in the graph below is $0 \to 4 \to 5 \to 6$, but it is not a tiger path; the shortest tiger path is $0 \to 1 \to 2 \to 3 \to 6$.

Formulate the shortest tiger path problem as a traditional (unweighted) shortest path problem in a directed graph. Specifically, define a digraph G' , source s , and destination t such that the length of the shortest path from s to t in G^{\prime} is always equal to the length of the shortest tiger path between s and t in G . For simplicity, you may assume that s is black and t is orange.

For full credit, the number of vertices in G' must be $\Theta(V)$ and the number of edges must be $\Theta(E)$, where V and E' are the number of vertices and edges in G' , respectively.

Part 2: What is a tree, exactly?

Prove *formally* that the following conditions on an *n*-vertex undirected graph G are equivalent:

- 1. G is acyclic and connected;
- 2. G is maximal among all *n*-vertex acyclic graphs (i.e., adding an edge creates a cycle);
- 3. G is minimal among all *n*-vertex connected graphs (i.e., removing any edge disconnects it).

(Therefore, the mathematical definition of a tree is any – equivalently, all – of the above.)