¥ C0S226 Precept 3 Fall 24

Precept Outline Relevant Book Sections
* Review of Lectures 5 and 6: + Book chapters: 2.1, 2.2 and 2.5

- Comparators and Comparables
- Elementary sorts
- Mergesort

A. Review: O/ Notation + Elementary Sorts + Mergesort + Comparable/Comparator

Your preceptor will briefly review key points of this week’s lectures. They may refer to the warm-up exercise and
the code snippet shown below.

Warm-up: Let f(n) = 3n + 4nlogy n + 8y/nlogy n. Select all that apply.

() fn)=0(n)

() f(n) =Q(n)

() f(n) =0(ynlogn)
() f(n)=2(/nlogn)
() f(n)=0(nlogn)
() fln)= Q(nlogn)
() f(n)=0(®?

() f(n)=9(n?

() f(n)=0(logn)

() f(n) =Q(logn)
() fln)=0(2")

() f(n)=20(2")

1 public class YourClass implements Comparable<YourClass> {

2 public int compareTo(YourClass that) {

3 // returns int > @ if this > that

4 // returns int < @ if this < that

5 // returns @ otherwise

6 }

7

8 private static class YourComparator implements Comparator<YourClass> {
9 public int compare(YourClass obj1, YourClass obj2) {
0 // returns int > @ if obj1 > obj2

1 // returns int < @ if objl < obj2

2 // returns @ otherwise

3 }

4 }

5 public static Comparator<YourClass> yourComparison() {

6 return new YourComparator();

7 }

8

9}

B. Comparable & Comparator

The code snippet below shows the instance variables of a class Movie, and partially filled instance methods that
should support comparing elements of this class in three ways:

* by alphabetical order of title (the default order);
* by release year; and
* by rating (0-5 stars).

Fill in the blanks numbered 1 to 6.

1 public class Movie implements
private String title;
private int year;
private int rating;

N

public int compareTo(Movie m) {
return (2)

© N o U A~ W

3

©

public static Comparator<Movie> byYear () {
return new YearComparator();

}

private static class YearComparator implements ______________ (3) o ____ {
public int compare(Movie m1, Movie m2) {
return ______________ (4)

3
3

public static Comparator<Movie> byRating() {
return new RatingComparator();

}

private static class RatingComparator implements ______________ (5) o ____ {
public int compare(Movie m1, Movie m2) {
return (6)

U A W N = O © ®® N o U A W N = O

o

}

o W 0
[}

C. Sorting Algorithms

Part 1: Spring'24 Midterm Problem

Given two integer arrays, al] and b[], the symmetric difference between a[] and b[] is the set of elements that
appear in exactly one of the arrays. Design an algorithm that receives two sorted arrays, each consisting of n
distinct elements, and outputs the size of their symmetric difference.

For full credit, it must use ©(1) extra memory and its running time must be ©(n) in the worst case (the arrays a[]
and b[] should not be modified). A solution with O(n log n) runtime and O(n) extra memory that does not satisfy
the full credit performance requirements receives partial (at least half) credit.

Part 2: Sorting Lower Bounds

Imagine you are given unlimited access to call a method (say, via “the cloud”) which costs your program constant
time in order to help sort an array.

(@) Suppose the method is sum(int[] a, int i, int j), which, given two indices 0 < i < j < n, returns the sum

7_; alk]. Can you use it to implement a (comparison-based) sorting algorithm with O(n) running time? If

so, how? If not, why not?

(b) Suppose the method ismin(int[] a, int i), which returns min;<,{alk]}. Can you use it to implement a
(comparison-based) sorting algorithm with O(n) running time? If so, how? If not, why not?

Part 3: Equality of Histograms

The histogram of an array s[] of samples is the set of pairs (i, f;), where f; is the number of indices j such that
the ;" sample s[j] has value i. (That is, f; = |{j : s[j] = i}|.)

Letal[] and b[] be integer arrays representing sample sequences. Design an algorithm with O(n logn) worst-case
running time that identifies whether the histograms of a and b are equal (i.e., if, for all i, the frequency of i is the
same in a and b).

D. Assignment Overview: Autocomplete

Your preceptor will introduce and give an overview of your third assignment. Don't hesitate to ask questions!
Summary of the assignment:

« Implement a Term class, which stores a word (as a string) and a numeric weight, and also implements compara-
tors for comparing terms in natural order, in decreasing order of weight, and lexicographically based on the
first r characters.

+ Create a data type Autocomplete that initializes with given arrays of terms and weights, and supports methods
to return the weight of a term, the top matching term, and the top k£ matching terms in descending order of
weight.

* Implement a BinarySearchDeluxe class, which should use binary search to find the first and last index of a given
key in a sorted array (these are important primitives to the Autocomplete class).

https://www.cs.princeton.edu/courses/archive/fall24/cos226/assignments/autocomplete/specification.php

E. Optional Bonus Problems

Part 1: Three-way Mergesort

(Two-way) Mergesort is quite a simple algorithm to describe: to sort n elements, divide the array in half, (recur-
sively) sort each then merge the two halves together. In this exercise, we will study a variant of it: in three-way
Mergesort, we divide an array of length n into 3 subarrays of length Z, sort each of them and then perform a
3-way merge.

Given 3 sorted subarrays of size 5, how many comparisons are needed (in the worst case) to merge them to a
sorted array of size n? Provide your answer in tilde notation.

What is the order of growth of the number of compares in 3-way Mergesort as a function of the array size n?
(Here we're counting the total number, including all recursive calls.)

Given a choice, would you choose 3-way or 2-way mergesort? Justify your answer.

Part 2: (Challenge) Counting Inversions

In an array h of n numbers, an inversion is a pair of elements that isn't sorted; that is, two indices 7 and j such that
i < jand h[i] > h[j].

Describe an algorithm to compute the total number of inversions of an array of length n in time ©(nlogn). Hint:
think about how you can modify mergesort to achieve this.

	Review: O/ Notation + Elementary Sorts + Mergesort + Comparable/Comparator
	Comparable & Comparator
	Sorting Algorithms
	Spring'24 Midterm Problem
	Sorting Lower Bounds
	Equality of Histograms

	Assignment Overview: Autocomplete
	Optional Bonus Problems
	Three-way Mergesort
	(Challenge) Counting Inversions

