
COS226 Precept 1 Fall ’24
Precept Outline• Course introduction.• Review of Lectures 1 and 2.• Overview of Assignment 1 (Percolation).

Relevant Book Sections• 1.4 (Analysis) and 1.5 (Union-Find)• 1.1 and 1.2 (Java review)

A. Introduction

We’re pretty psyched for you to see what we’ve got in store, but, before we let you loose, here are just a fewwordsabout the format of precept in this course:
Precepts will be a mix of review, problem solving and discussion. Each precept will start with a short reviewof the lecture contents, followed by solving a mix of exercises in this handout. A lot of the exercises follow thesame format as the ones you will find in the midterm and final exams, so precepts will be good practice for those.There are also optional bonus problems in the PDF on the course webpage (but not in the handout), for studentswho want an extra challenge.
The exercises are meant to be done in pairs. We want to encourage you to talk about the details of algorithmsand data structures with a peer so you can help fill in each other’s blind spots.
These exercises are not graded. You don’t have to hand in any solutions, we won’t grade any of your preceptwork. So you are encouraged to ask questions about the problems. The solutions to each exercise will be releasedafter all precepts are done.
You are not expected to complete all of the problems in each handout. These handouts and the accompa-nying Ed lessons are intended for practice, you don’t have to solve all of them during or after precept. In fact, it’svery unlikely you’ll go through the whole handout in any precept. Some of the problems aremarked as “optional”,which means they are outside of the scope of the course and are intended to be bonus challenge problems.
Attendance is mandatory. Your preceptor will keep track of your attendance (except for this first week), andyour attendance will be 2.5% of your grade.

B. Review: Analysis and Union-Find

Your preceptor will briefly review key points of this week’s lectures.



C. Analysis

Part 1: Loops

Runtime analysis can be tricky business; even short and simple-looking code can be hard to analyze correctly.The key to mastering this skill is practice, practice, practice. That’s what we’ll do in this part.
Determine the number of times the function op() is called asymptotically, as a function of n, using both tilde (∼)and big Theta (Θ, i.e., order-of-growth) notation.
1.
1 for (int i = 10; i < n + 5; i += 2)
2 op();

3.
1 for (int i = 0; i < n; i++)
2 for (int j = 0; j < 100; j++)
3 op();

5.
1 for (int i = 0; i < n; i++) {
2 for (int j = 0; j < n; j++)
3 op();
4 for (int j = 1; j < n; j *= 2)
5 op();
6 }

2.
1 for (int i = 1; i <= n * n * n; i *= 2)
2 op();

4.
1 for (int i = 0; i * i < n; i++)
2 for (int j = 1; j < n; j *= 3)
3 op();

6.
1 for (int i = 0; i < n; i++)
2 for (int j = 0; j < 100; j++)
3 for (int k = 0; k < n / 2; k++)
4 for (int l = 0; l < n; l++)
5 for (int m = 0; m < l; m++)
6 op();

2



D. Union-Find

Part 1: Find the Bug!

Consider the following (incorrect) implementation of union() in the quick-find data structure. Recall that thelength-n leader[] array is initialized with leader[i] = i for all i, and that find(i) returns leader[i].
1 public void union(int p, int q) {
2 for (int i = 0; i < leader.length; i++)
3 if (leader[i] == leader[p])
4 leader[i] = leader[q];
5 }

Find a number of elements n, a sequence of union() operations and integer 0 ≤ i, j < n such that i and j shouldbelong to the same set but find(i) and find(j) return different values.

3



Part 2: Fall’22 Midterm Question

For the items below, assume we initialize a union-find data structure with n elements. Then, we perform thefollowing sequence of union() operations: union(0, 1), union(0, 2), union(0, 3), . . . , union(0, n - 1).
(a) How many total connected components (i.e., sets) does the resulting data structure contain?
(b) Assume that the data structure implementation is quick-find. How many array updates are made by these

union() operations, as a function of n in tilde notation? (Recall that our quick-find implementation of
union(p,q) never changes leader[q].

(c) Assume that the data structure implementation is quick-union, and that we call find(0) after the sequenceof operations above. Howmany array accesses would find(0)make as a function of n inΘ notation? (Recallthat our quick-union implementation of union(p,q) operation never changes parent[q].
(d) Assume that the data structure implementation is weighted quick-union, and that we call find(0) after thesequence of operations above. How many array accesses, as a function of n in Θ notation, would find(0)make?

E. Assignment Overview: Percolation

Your preceptorwill introduce and give an overviewof your first assignment. Please don’t hesitate to ask questions!

4

https://www.cs.princeton.edu/courses/archive/fall24/cos226/assignments/percolation/specification.php


F. Optional Bonus Problems

Part 1: Useful Identities

We will make extensive use (really) of two identities throughout this course: for partial sums of arithmetic andgeometric progressions (in special cases).
Let’s start by proving these identities: formally show that

n∑
i=1

i = 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

and
n−1∑
i=0

2i = 1 + 2 + 4 + · · ·+ 2n−1 = 2n − 1.

Part 2: More Useful Identities

Prove that
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6
∼ n3

3

and
Hn :=

n∑
i=1

1

i
∼ lnn.

5



Part 3: Applying Union Find (Challenge)

Suppose you are given a sequence of n positive integers. Define a “group” as a contiguous subsequence of el-ements. The length of the group is the number of elements in it, and its value is its smallest element. (E.g., thesequence (5, 3, 4, 1) has a single group of length 4 and value 1; two groups of length 3, with values 3 and 1; etc.)
For each ℓ = 1, . . . , n, determine themaximum value among all groups of length ℓ. The runtime of your algorithmshould be asymptotically smaller than Θ(n2).

6


	Introduction
	Review: Analysis and Union-Find
	Analysis
	Loops

	Union-Find
	Find the Bug!
	Fall'22 Midterm Question

	Assignment Overview: Percolation
	Optional Bonus Problems
	Useful Identities
	More Useful Identities
	Applying Union Find (Challenge)


