
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 12/2/24 10:45  PM

INTRACTABILITY

‣ introduction

‣ P vs. NP

‣ poly-time reductions

‣NP-completeness

‣Dealing with intractability

‣ Leveraging intractabilityhttps://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

INTRACTABILITY

‣ introduction

‣ P vs. NP

‣ poly-time reductions

‣NP-completeness

‣ dealing with intractability

‣ Leveraging intractability

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Fundamental questions

What is an algorithm?

What is an efficient algorithm?

Which problems can be solved efficiently and which are intractable?

How can we prove that a problem is intractable?

How can we cope with intractability?

How can we benefit from intractability?

3

Multiplication

 37 ⋅ 79 = 2923

4

?

Factorization

5

 43 ⋅ 67 = 2881 ? ?

12301866845301177
55130494958384962
72077285356959533
47921973224521517
26400507263657518
74520219978646938
99564749427740638
45925192557326303
45373154826850791
70261221429134616
70429214311602221
24047927473779408
06653514195974598
56902143413

Slightly bigger multiplication

6

33478071698956898
78604416984821269
08177047949837137
68568912431388982
88379387800228761
47116525317430877
37814467999489

36746043666799590
28244633799627952
63227915816434308
76426760322838157
39666511279233373
41714339681027009
2798736308917

=⋅ ?

Computed in a split second by a standard laptop!

Slightly bigger factorization

7

33478071698956898
78604416984821269
08177047949837137
68568912431388982
88379387800228761
47116525317430877
37814467999489

36746043666799590
28244633799627952
63227915816434308
76426760322838157
39666511279233373
41714339681027009
2798736308917

12301866845301177
55130494958384962
72077285356959533
47921973224521517
26400507263657518
74520219978646938
99564749427740638
45925192557326303
45373154826850791
70261221429134616
70429214311602221
24047927473779408
06653514195974598
56902143413

=⋅ ?

 RSA factoring challenge
2 years, team of mathematicians

 ?
$50,000

 RSA-768, 232 digits

Multiplication (computationally easy)

Multiplication. Given integers , , return .

Algorithm. Grade-school multiplication runs in time , where is the number of digits in , .

x y xy

Θ(n2) n x y

8

Integer factorization (computationally hard?)

Factorization (search). Given an integer , find a nontrivial factor.  

Applications. Cryptography. [stay tuned]
 
Brute-force search. Try all possible divisors between 2 and .

Can we do anything substantially more clever?

x

x

9

neither 1 nor x

or report that no such factor exists

if there’s a nontrivial factor larger
than , there is one smaller than x x

Mincut (computationally easy)

Mincut (search). Given a graph , return a cut that minimizes the number of crossing edges.
 
 
 
 
 
 
 
 
 
 
Algorithm. Ford-Fulkerson-based algorithm runs in time .

G

Θ(VE2)

10

Maxcut (computationally hard?)

Maxcut (search). Given a graph , return a cut that maximizes the number of crossing edges.
 
 
 
 
 
 
 
 
 
 
Brute-force search. Try all possible cuts.

Can we do anything substantially more clever?
Probably not. [stay tuned]

G

2V − 2

11

boolean satisfiability with 2 vars (computationally easy)

2-SAT (search). Given m boolean equations over the variables x1 … xn in the form “yi or yj = true”,  
where yi is either xi or ¬ xi, return a truth assignment that satisfies all equations.
 
Example.  
 
 
 
 
 
 

 
SAT applications.

・Automatic verification systems for software.

・Mean field diluted spin glass model in physics.

・Electronic design automation (EDA) for hardware.
12

x1 = false

x2 = false

x3 = true

x4 = true

satisfying assignment

or report that no such
assignment is possible

CNF, conjunctive
normal form

¬ x1 or x2 = true

x1 or x3 = true

¬ x2 or ¬ x3 = true

¬ x2 or x4 = true

x3 or ¬ x4 = true

 2-SAT instance

boolean satisfiability with 3 vars (computationally hard?)

3-SAT (search). Same as 2-SAT, but every equation has 3 variables instead of 2.
 
Example.  
 
 
 
 
 
 

 
Brute-force search. Try all 2n possible assignments (n = # variables).
 
Can we do anything substantially more clever?
Probably not. [stay tuned]

13

¬ x1 or x2 or x3 = true

x1 or ¬ x3 or x4 = true

x2 or ¬ x3 or ¬ x1 = true

¬ x2 or x4 or x3 = true

¬ x3 or ¬ x4 or ¬ x2 = true

 3-SAT instance

x1 = false

x2 = false

x3 = true

x4 = true

satisfying assignment

How difficult can it be?

Imagine a galactic computer…

・With as many processors as electrons in the universe.

・Each processor having the power of today’s supercomputers.

・Each processor working for the lifetime of the universe.
 
 
 
 
 
 
 
 
Could galactic computer solve satisfiability instance with 1,000 variables using brute-force search?
Not even close: 21000 > 10300 >> 1079 ⋅ 1013 ⋅ 1017 = 10109.

 
Lesson. Exponential growth dwarfs technological change!

14

quantity estimate

electrons in universe 1079

instructions per second 1013

age of universe in seconds 1017

Efficient algorithms

What is an efficient algorithm?
Algorithm whose running time is at most polynomial in the size of the input.
 
What is an algorithm?
A Turing Machine! Equivalently, a program in Java/Python/C++/…
 
Extended Church-Turing thesis. Any problem the can be efficiently solved
by a physical system can also be efficiently solved by a Turing machine.

 

Why is polynomial time considered efficient?
robust across models, closed under composition,  
most poly-time algos have small exponents.

15

of bits in the input’s
representation

order emoji name today

Θ(1) 😍 constant 🙂

Θ(log n) 😎 logarithmic 🙂

Θ(n) 😁 linear 🙂

Θ(n log n) 😀 linearithmic 🙂

Θ(n2) 😕 quadratic 🙂

Θ(n3) 🙁 cubic 🙂

Θ(nlog n) 😨 quasipolynomial 👿

Θ(1.1n) 😭 exponential 👿

Θ(2n) 😈 exponential 👿

Θ(n!) 👿 factorial 👿

falsifiable thesis.
believed to be false —
quantum computers

A Turing machine

is better than ?nbillion 2n/billion

Intractability: quiz 1

Which of the following are poly-time algorithms?

A. Brute-force search for 3-SAT.

B. Brute-force search for maxcut.

C. Brute-force search for factorization.

D. All of the above.

E. None of the above.

16

involves checking 2n truth assignments
(n = # variables, m = # equations, input size)Θ(m log n)

involves checking possible divisors
(input size = = # bits in binary representation of x)

x = 2log2 x = 2 1
2 ⋅log2 x

log2 x

involves checking possible cuts
(input size)

2V − 2
Θ(E + V)

Intractable problems

A problem is tractable if there exists an efficient (poly-time) algorithm that solves it.
Otherwise, it is intractable.
 
How can we tell which problems are tractable?

Generally no easy way.

Seemingly similar problems can behave differently &  
efficient algorithms are often clever and complex.

Focus of today’s lecture!

17

tractable intractable?

primality factorization

shortest path longest path

min cut max cut

Euler cycle Hamiltonian cycle

2-SAT 3-SAT

⋮ ⋮

require math
insights

Intractable problems

18

INTRACTABILITY

‣ introduction

‣ P vs. NP

‣ poly-time reductions

‣NP-completeness

‣ dealing with intractability

‣ Leveraging intractability

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

The P complexity class

A decision problem is a Boolean function that, given an input, answers YES/NO.  

Def. P is the set of all decision problems that can be solved in polynomial time.
 
Examples.

2-SAT (decision): Given a system of equations, is there an assignment that satisfies all equations?

mincut (decision): Given a graph and integer k, is there a cut in with more than k crossing edges?

multiplication (decision): Given integers , , k, is ?

primality (decision): Given an integer , is prime?

 

Are all “interesting” problems in P? Perhaps there is always a clever algorithm…

G G

x y xy ≥ k

x x

20

first poly-time algorithm in 2002!

The NP complexity class

Def. NP is the set of all decision problems for which a YES answer can be verified  
in polynomial time provided a “witness” (a.k.a “proof”, “certificate”).
 
Examples.

Factorization (decision): Given integers , , does have a nontrivial factor ?
 Witness. A nontrivial factor of .
 Verification. Output YES if and divides .

3-SAT (decision): Given a system of equations, is there an assignment that satisfies all equations?
 Witness. A satisfying assignment.
 Verification. Output YES if the assignment satisfies all equations.

 
Note. A problem is in NP if a purported witness for a YES answer can be verified in poly time:

・It does not require finding the witness (e.g., the candidate factor is provided).

・It does not require verifying a NO answer (e.g., no factor).

x k x ≤ k

f ≤ k x

1 < f ≤ k f x

≤ k

21

 = 2881x

factorization instance

 = 50k

quadratic time using long division

43

witness

x1 = false

x2 = false

x3 = true

x4 = true

satisfying
assignment

Intractability: quiz 2

Which decision version of maxcut is in NP?

A. Given a graph G and integer k, does the maximum cut in G has at most k crossing edges.

B. Given a graph G and integer k, does the maximum cut in G has at least k crossing edges.

C. Both A and B.

D. Neither A nor B.

22

witness = cut with at least k crossing edges

unlikely to be in NP
(but remains unknown)

P vs. NP

P = set of decision problems whose solution can be computed efficiently (in poly-time).  
NP = set of decision problems whose solution can be verified efficiently (in poly-time).  

Observation. NP contains P

THE question. P = NP ? 
 Is solving harder than verifying?
 
Two possible worlds.

 
 
 
 
 
 
Conjecture. P ≠ NP.

23

P = NP

P = NP
poly-time algorithms for

factorization, 3-SAT, maxcut, …

P
NP

intractable
problems

P ≠ NP

decision problems decision problems

brute-force search may be
the best we can do

$ 1M

any string serves as witness

long futile search for
poly-time algorithms

Why is P vs NP so central?

P vs NP is central in math, science, technology and beyond.
NP models many intellectual challenges humanity faces: Why try to solve a problem if you

cannot even determine whether a solution is good?

Intuitively, verifying a solution should be way easier than finding it, supporting P ≠ NP.

Analogy for P vs NP. Creative genius vs. ordinary appreciation of creativity.

24

creative genius

domain problem witness/solution

mathematics is a conjecture correct? mathematical proof

engineering
given constraints (size, weight, energy),

find a design (bridge, medicine, computer) blueprint

science
given data on a phenomenon,

find a theory explaining it a scientific theory

the arts
write a beautiful poem / novel / pop song,

draw a beautiful picture
a poem, novel, pop song,

drawing
ordinary appreciation

Princeton computer science building

25

Princeton computer science building (closeup)

26

0
1

1
0

0

0

01
1

0
1

0

1

11
0

1
1

1

0

00
1

1
0

0

0

01
1

0
1

1

1

1

char ASCII binary

P 80 1010000
= 61 0111101
N 78 1001110
P 80 1010000
? 63 0111111

INTRACTABILITY

‣ introduction

‣ P vs. NP

‣ poly-time reductions

‣NP-completeness

‣ dealing with intractability

‣ Leveraging intractability

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Poly-time reduction

Goals.

・Classify problems according to computational requirements.

・If we can (or cannot) solve problem X efficiently, what other problems can (or cannot) be solved efficiently?

 

Def. Problem poly-time reduces to problem , if there exists a polynomial such that  
any time- algorithm for can be used to construct a time- algorithm for .

Algorithm design. If and can be solved efficiently, then can also be solved efficiently.

Establishing intractability. If and is intractable, then is also intractable.

 

Common mistake. Confusing poly-time reduces to with poly-time reduces to .

X Y p(n)

T(n) Y T(p(n)) X

X ⪯ Y Y X

X ⪯ Y X Y

X Y Y X

28

formal def
in COS 240!

“solution to implies solution to ”
“ is harder than ” (up to polys)

denoted

Y X
Y X

X ⪯ Y

T(n) ≥ n ex. , implies . T(n) = n2 p(n) = n3 T(p(n)) = n6

Poly-time reduction example 1

Bipartite matching maxflow:

 

 

 

 

 

 

 

 

 

 

Algorithm design. Since maxflow can be solved efficiently, so can bipartite matching.

⪯

29

bipartite matching

3

1

5

2

4

1′

3′

4′

2′

5′

1 1

1

3

1

t

1′

3′

4′

5

2

4

2′

5′

s

maxflow

input size increases,
 p(n) ≥ n

Poly-time reduction example 2

Longest path shortest path with negative weights:

 

 

 

 

 

 

 

 

Establishing intractability. If longest path is intractable (as conjectured), so is shortest path with negative weights.

⪯

30

40 1

2 3

40 1

2 3

2

6

7

4

1

5

longest path

40 1

2 3

0 1

2

-2

-6

-7

-4

-1

-5

shortest path

Intractability: quiz 3

Suppose that Problem X poly-time reduces to Problem Y.  
Which of the following can we infer?

A. If Y can be solved in Θ(n3) time, then X can be solved in Θ(n3) time.

B. If Y can be solved in Θ(n3) time, then X can be solved in poly-time.

C. If X cannot be solved in Θ(n3) time, then Y cannot be solved in poly-time.

D. If Y cannot be solved in poly-time, then neither can X.

31

if , we are only
promised algo for X

p(n) = n2

Θ(n6)

, poly implies polyT(n) p(n) T(p(n))

X may still have a poly
time algo (e.g., Θ(n4))

Y may be much harder than X

KNAPSACK BIN-PACKING

PARTITION

SUBSET-SUM

CLIQUE

3-SAT

ILP

HAMILTON-CYCLEEXACT-COVER

Some poly-time reductions from SAT

32

3-COLOR VERTEX-COVER

INDEPENDENT-SET TSP

SAT poly-time reduces VERTEX-COVER.
how can an algorithm solving a graph problem be

used to solve a system of equations?
intricate reductions are common!

Richard Karp
(1972)

Conjecture. 3-SAT is intractable.

If true, all these problems are also intractable!

INTRACTABILITY

‣ introduction

‣ P vs. NP

‣ poly-time reductions

‣NP-completeness

‣Dealing with intractabilityROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

NP-completeness

Def. Y ∈ NP is NP-complete if for all X ∈ NP, .
 
Two worlds.
 
 
 
 
 
 
Cook-Levin theorem. 3-SAT is NP-complete.
Pioneering result in computer science!
 
Corollary 1. 3-SAT can be solved in poly-time if and only if P = NP.
 
Corollary 2. To show that Y ∈ NP is NP-complete, it suffices to show 3-SAT .
Thousands of problems have been proven to be NP-complete!

X ⪯ Y

⪯ Y

34

X is maximally hard in NP

P = NP = NPC

P = NP

P

NP

P ≠ NP

NPC

decision problems decision problems

Stephen Cook
(1971)

Leonid Levin
(1971)

how can we prove 3-SAT
if we don’t know X?

X ⪯

NP-complete problems

35

6,000+ scientific
papers per year.

field of study NP-complete problem

Computer sience / Math maxcut, longest path, vertex cover, 3-SAT,…

Aerospace engineering optimal mesh partitioning for finite elements

Biology phylogeny reconstruction

Chemical engineering heat exchanger network synthesis

Chemistry protein folding

Civil engineering equilibrium of urban traffic flow

Economics computation of arbitrage in financial markets with friction

Electrical engineering VLSI layout

Environmental engineering optimal placement of contaminant sensors

Financial engineering minimum risk portfolio of given return

Game theory Nash equilibrium that maximizes social welfare

Mechanical engineering structure of turbulence in sheared flows

Medicine reconstructing 3d shape from biplane angiocardiogram

Operations research traveling salesperson problem, integer programming

Physics partition function of 3d Ising model

Politics Shapley–Shubik voting power

Pop culture versions of Sudoku, Checkers, Minesweeper, Tetris

Statistics optimal experimental design

NP-complete problems are different manifestations
of the same fundamentally hard problem.
Solving any one of them in poly time solves all!  
No field-specific math insights are required!

Intractability: quiz 4

Suppose that X is NP-complete. What can you infer?

A. X ∈ NP.

B. If X can be solved in poly-time, then P = NP.

C. If X cannot be solved in poly-time, then P ≠ NP.

D. If Y ∈ NP and then Y is NP-complete.

E. All of the above.

X ⪯ Y

36

NP-complete problem can be solved
in poly-time if and only if P = NP.

INTRACTABILITY

‣ introduction

‣ P vs. NP

‣ poly-time reductions

‣NP-completeness

‣ dealing with intractability

‣ Leveraging intractability

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Dealing with intractability

38

Approaches to coping with intractability

… so your problem is NP-complete
Safe to assume it is intractable: no worst-case poly-time algorithm solves all problem instances.
 
Do you need to solve all instances?
Model real-world instances. Worst-case inputs might not arise in practical applications.
 
Do you need the exact optimal solution?
Approximation algorithms. Look for good (though potentially suboptimal) solutions.

39

protein folding
is NP-complete

Vertex cover

A vertex cover of a graph G is a set of vertices such that every edge in G has at least one endpoint in the set.
 
 
 
 
 
 
 
 
 
 
 

 is the minimum size of a VC for G.
 
VC (decision): Given G, k, is ?

VC (-approx): Return a VC of size .

OPT(G)

OPT(G) ≤ k

α ≤ α ⋅ OPT(G)

40

not VC VC VC
OPT(G) = 3 2-approx

NP-complete

want as small as possible (min problem)α > 1

Detour: maximal matching

A matching in a graph G is a set of edges where no two edges share a common endpoint.

A maximal matching is a matching that cannot be extended by including an additional edge.

 

 

 

 

 

 

 

 

 

Greedy algorithm: . Iterate through the edges, adding an edge to if neither endpoint
of is shared with any edge already in .

M = ∅ e M

e M

41

matching

maximal matching
(but not perfect)

not matching matching

not maximal

Θ(E + V)

Vertex cover: 2-approximation algorithm

Algorithm.

Find a maximal matching in G.

Return the set of all endpoints of edges in .
 
Claim. For every G, the algorithm returns a VC of size .

Proof.

 is a VC: Otherwise, there is an edge with no endpoint in .
 can be added to , contradicting ’s maximality.

: Let be a minimum VC.
Since is a matching, the endpoints of all edges in are distinct.
For every edge in , at least one of its endpoints is in .
So, .

M

S M

≤ 2 ⋅ OPT(G)

S e S
e M M

|S | ≤ 2 ⋅ OPT(G) S*
M M

M S*
|S | = 2 |M | ≤ 2 |S* |

42

maximal matching

VC

conjectured to be optimal

Θ(E + V)

3-SAT: randomized 7/8-approximation algorithm

 is the maximum fraction of equations in I that can be satisfied.
 
3-SAT (decision): Given I, k, is ?

3-SAT (-approx): Given I , return an assignment that satisfies fraction of the equations.

 
Algorithm.

Generate random assignments and return the one that satisfies the most equations.

 

Claim. For any I, with probability .99, the returned assignment satisfies fraction of the equations.

Proof idea. A core observation is that a random assignment satisfied each equation with probability .
E.g., “¬ x5 or x8 or ¬ x9 = true” is not satisfied only when x5 = T, x8 = F, x9 = T, which happens with probability .

OPT(I)

OPT(I) ≥ k

α ≥ α ⋅ OPT(I)

100m

≥ 7/8

7/8

(1/2)3

43

optimal! (unless P = NP)

NP-complete

want as large as
possible (max problem)

α < 1

often k = 1

assume 3 district
variables in an equation

polynomial time

m = # of equations

Approximation algorithm

-approximation algorithm:  
For a minimization problems: return a solution with value , .

For a maximization problems: return a solution with value , .

An NP-complete problem may admit a polynomial-time -approximation algorithm:

・For no constant .

・For some constant (e.g., 2, 1/2 or 7/8).

・For every 0, 1 (PTAS/FPTAS).

 
The field of hardness of approximation studies the optimal achievable for different
NP-complete problems.

α

≤ α ⋅ OPT α > 1

≥ α ⋅ OPT α < 1

α

α

α

α ≠

α

44

easy to solve with any precision,
hard to solve exactly

hard to solve with any precision

easy to solve with precision ,
hard with better precision

α

INTRACTABILITY

‣ introduction

‣ P vs. NP

‣ poly-time reductions

‣NP-completeness

‣ dealing with intractability

‣ Leveraging intractability

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Leveraging intractability: guiding scientific inquiry

1926. Ising introduces a mathematical model for ferromagnetism.
1930s. Closed form solution is a holy grail of statistical mechanics.
1944. Onsager finds closed form solution to 2D version in tour de force.
1950s. Feynman (and others) seek closed form solution to 3D version.
2000. Istrail shows that ISING-3D is NP-complete.
 
Bottom line. Search for a closed formula seems futile.

46

Leveraging intractability: cryptography

Secure password system. A user creates a password to enable login to their account.  
How can the server store the password securely?
 
Solution. Convert password into two large primes . Server stores only the product .
To log in, user provides . The server computes the product and compares to .

Server: Multiply two integers (efficient).

Malicious user: Solve factorization (conjectured to be intractable).
 
Cryptographic schemes (e.g., RSA encryption) require malicious parties to solve intractable (?) NP problems.

P = NP no crypto!

p, q N = pq

p, q N

⟹

47

761838257287 × 193707721 147573952589676412927

multiply
(easy)

factor
(difficult)

Len AdelmanAdi ShamirRon Rivest

Leveraging intractability: derandomization

Fun game. I toss a coin; you guess how it will land. What’s the probability you guess correctly?
 
Fun game 2. I toss a coin; you can use your computer to guess how it will land.  
What’s the probability you guess correctly?
 
Fun game 3. I toss a coin; you are a Martian with complete knowledge of the physics of the  
universe and access to sophisticated equipment.  
You guess how it will land—what’s the probability you guess correctly?

Randomness is in the eye of the beholder!

 
Hardness vs. Randomness. The outcome of intractable problems often appears random.  
We can feed such outcomes to randomized algorithms instead of real randomness,  
thereby making them deterministic.

48

still 50%…

50%

100%?

computational power

A final thought

49

 “ Now my general conjecture is as follows: for almost all sufficiently
complex types of enciphering, […] the mean key computation length
increases exponentially with the length of the key […].

The nature of this conjecture is such that I cannot prove it […].
Nor do I expect it to be proven. ”

 — John Nash

