Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

ROBERT SEDGEWICK | KEVIN WAYNE

INTRACTABILITY

‣ *poly-time reductions*

‣ *NP-completeness*

‣ *Dealing with intractability*

<https://algs4.cs.princeton.edu> **/ Leveraging intractability**

Last updated on 12/2/24 10:45PM

INTRACTABILITY

‣ *P vs. NP*

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

<https://algs4.cs.princeton.edu>

What is an algorithm? What is an efficient algorithm? Which problems can be solved efficiently and which are intractable? How can we prove that a problem is intractable? How can we cope with intractability? How can we benefit from intractability?

Multiplication

$37 \cdot 79 = ?$

4

Factorization

? ⋅ 67? = 2881

Slightly bigger multiplication

 ⋅ ⁼ ?

Computed in a split second by a standard laptop!

Slightly bigger factorization

RSA factoring challenge 2 years, team of mathematicians \$50,000

RSA-768, 232 digits

Multiplication (computationally easy)

Multiplication. Given integers x, y, return xy.

Algorithm. Grade-school multiplication runs in time $\Theta(n^2)$, where *n* is the number of digits in *x*, *y*.

Integer factorization (computationally hard?)

Factorization (search). Given an integer x , find a nontrivial factor. \longleftarrow or report that no such factor exists

Applications. Cryptography. [stay tuned]

Brute-force search. Try all possible divisors between 2 and \sqrt{x} .

if there's a nontrivial factor larger than \sqrt{x} *, there is one smaller than* \sqrt{x}

Can we do anything substantially more clever?

neither 1 *nor x*

Mincut (computationally easy)

Mincut (search). Given a graph G , return a cut that minimizes the number of crossing edges.

Algorithm. Ford-Fulkerson-based algorithm runs in time $\Theta(VE^2)$.

Maxcut (computationally hard?)

Maxcut (search). Given a graph G , return a cut that maximizes the number of crossing edges.

Brute-force search. Try all $2^V - 2$ possible cuts. Can we do anything substantially more clever? Probably not. [stay tuned]

boolean satisfiability with 2 vars (computationally easy)

2-SAT (search). Given *m* boolean equations over the variables $x_1 \ldots x_n$ in the form " y_i *or* $y_j = true$ ", \longleftarrow where y_i is either x_i or \neg x_i , return a truth assignment that satisfies all equations.

Example.

 $\neg x_1$ *or* x_2 = *true* x_1 *or* x_3 = *true* $\neg x_2$ or $\neg x_3$ = true $\neg x_2$ *or* $x_4 = true$ x_3 *or* $\Box x_4$ = *true*

SAT applications.

- ・Automatic verification systems for software.
- ・Mean field diluted spin glass model in physics.
- ・Electronic design automation (EDA) for hardware.

12

satisfying assignment

or report that no such assignment is possible

- $x_1 = false$ $x_2 = false$
- x_3 = *true*
- x_4 = *true*

CNF, conjunctive normal form

boolean satisfiability with 3 vars (computationally hard?)

3-SAT (search). Same as 2-SAT, but every equation has 3 variables instead of 2.

Can we do anything substantially more clever? Probably not. [stay tuned]

Example.

$\neg x_i$ or x_2 or	x_2 or $\neg x_3$ or $\neg x_4$ or	$x_3 = true$ x_1 or x_3 or x_4 = true $\neg x_3$ or $\neg x_1$ = true $\neg x_2$ or x_4 or x_3 = true $\neg x_2 = true$

3-SAT instance

Brute-force search. Try all 2^n possible assignments ($n = #$ variables).

satisfying assignment

Imagine a galactic computer…

Could galactic computer solve satisfiability instance with 1,000 variables using brute-force search? Not even close: $2^{1000} > 10^{300} >> 10^{79} \cdot 10^{13} \cdot 10^{17} = 10^{109}$.

- ・With as many processors as electrons in the universe.
- ・Each processor having the power of today's supercomputers.
- ・Each processor working for the lifetime of the universe.

Lesson. Exponential growth dwarfs technological change!

What is an efficient algorithm?

Algorithm whose running time is at most polynomial *in the size of the input.*

What is an algorithm?

A Turing Machine! Equivalently, a program in Java/Pytl

Extended Church-Turing thesis. Any problem the can by a physical system can also be efficiently solved by

Why is polynomial time considered efficient? robust across models, closed under composition, most poly-time algos have small exponents. $\sum_{i=1}^{n}$ *is n*^{billion} better than $2^{n/billion}$?

A Turing machine

Which of the following are poly-time algorithms?

- **A.** Brute-force search for 3-SAT.
- **B.** Brute-force search for maxcut.
- **C.** Brute-force search for factorization.
- **D.** All of the above.
- **E.** None of the above.

16

A problem is tractable if there exists an efficient (poly-time) algorithm that solves it. Otherwise, it is intractable.

How can we tell which problems are tractable?

Generally no easy way. (

Seemingly similar problems can behave differently & efficient algorithms are often clever and complex.

Focus of today's lecture!

Intractable problems

INTRACTABILITY

 \blacktriangleright *P* vs. NP

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

<https://algs4.cs.princeton.edu>

A decision problem is a Boolean function that, given an input, answers YES/NO.

2-SAT (decision): Given a system of equations, is there an assignment that satisfies all equations? mincut (decision): Given a graph G and integer k , is there a cut in G with more than k crossing edges? multiplication (decision): Given integers x, y, k , is $xy \ge k$? primality (decision): Given an integer x , is x prime? \leftarrow first poly-time algorithm in 2002!

Def. **P** is the set of all decision problems that can be solved in polynomial time. Examples.

Are all "interesting" problems in **P**? Perhaps there is always a clever algorithm…

Def. **NP** is the set of all decision problems for which in polynomial time provided a "witness" (a.k.a "proof"

3-SAT (decision): Given a system of equations, is there an assignment that satisfies all equations? Witness. A satisfying assignment. Verification. Output YES if the assignment satisfies

Note. A problem is in NP if a *purported* witness for a

- It does not require *finding* the witness (e.g., the can
- It does not require verifying a *NO* answer (e.g., no

Examples.

Factorization (decision): Given integers x , k , does x have a nontrivial factor $\leq k$? Witness. A nontrivial factor $f \leq k$ of x . Verification. Output YES if $1 < f \leq k$ and f divides x . \longleftarrow quadratic time using long division

21

43

witness

satisfying assignment

Which decision version of maxcut is in NP?

- **A.** Given a graph *G* and integer *k*, does the maximum cut in *G* has *at most k* crossing edges.
- **B.** Given a graph *G* and integer *k*, does the maximum cut in *G* has *at least k* crossing edges.
- **C.** Both A and B.
- **D.** Neither A nor B.

22

P = set of decision problems whose solution can be *computed* efficiently (in poly-time). **NP** = set of decision problems whose solution can be *verified* efficiently (in poly-time).

Two possible worlds.

23

P = NP

Observation. **NP** contains **P** *any string serves as witness* THE question. $P = NP$? Is *solving* harder than *verifying*? *\$ 1M*

> *poly-time algorithms for factorization, 3-*SAT*, maxcut, …*

brute-force search may be the best we can do

 $P \neq NP$

long futile search for poly-time algorithms

P vs **NP** is central in math, science, technology and beyond. **NP** models many intellectual challenges humanity faces: *Why try to solve a problem if you cannot even determine whether a solution is good?*

Analogy for P vs NP. Creative genius vs. ordinary appreciation of creativity.

witness/solution

mathematical proof

a scientific theory

creative genius

Intuitively, verifying a solution should be way easier than finding it, supporting $P \neq NP$.

a poem, novel, pop song, drawing

ordinary appreciation

Princeton computer science building

25

Princeton computer science building (closeup)

INTRACTABILITY

‣ *introduction*

‣ *P vs. NP*

‣ *poly-time reductions*

‣ *NP-completeness*

‣ *dealing with intractability*

‣ *Leveraging intractability*

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

<https://algs4.cs.princeton.edu>

Goals.

- ・Classify problems according to computational requirements.
-

"*solution to Y implies solution to X*" "*Y is harder than* X " (*up to polys*) $denoted X \leq Y$

Def. Problem X poly-time reduces to problem Y, if there exists a polynomial $p(n)$ such that any time-T(n) algorithm for Y can be used to construct a time-T($p(n)$) algorithm for X. *T*(*n*) $\ge n$ **f**
T(*n*) $\ge n$ **f**
ex. T(*n*) = *n*², *p*(*n*) = *n*³ *implies T*(*p*(*n*)) = *n*⁶.

Algorithm design. If $X \leq Y$ and Y can be solved efficiently, then X can also be solved efficiently. Establishing intractability. If $X \leq Y$ and X is intractable, then Y is also intractable.

Common mistake. Confusing *X poly-time reduces to Y* with *Y poly-time reduces to X*.

・If we can (or cannot) solve problem *X* efficiently, what other problems can (or cannot) be solved efficiently?

- *formal def in COS 240!*
-
-

Poly-time reduction example 1

Bipartite matching \leq maxflow:

Algorithm design. Since maxflow can be solved efficiently, so can bipartite matching.

bipartite matching

 ′ $(3'$ ′ ′ ′

Poly-time reduction example 2

Longest path \leq shortest path with negative weights:

Establishing intractability. If longest path is intractable (as conjectured), so is shortest path with negative weights.

Suppose that Problem *X* **poly-time reduces to Problem** *Y***. Which of the following can we infer?**

- **A.** If *Y* can be solved in $\Theta(n^3)$ time, then *X* can be solved in $\Theta(n^3)$ time.
- **B.** If *Y* can be solved in $\Theta(n^3)$ time, then *X* can be solved in poly-time.
- **C.** If *X* cannot be solved in $\Theta(n^3)$ time, then *Y* cannot be solved in poly-time.
- **D.** If *Y* cannot be solved in poly-time, then neither can *X*.

31

Some poly-time reductions from SAT

32

INTRACTABILITY

‣ *introduction*

‣ *P vs. NP*

‣ *poly-time reductions*

‣ *NP-completeness*

ROBERT SEDGEWICK | KEVIN WAYNE **Dealing with intractability**

Algorithms

<https://algs4.cs.princeton.edu>

NP-completeness

Def. *Y* ∈ **NP** is **NP**-complete if for all *X* ∈ **NP**, *X* ≤ *Y*. ← *X* is maximally hard in **NP**

Corollary 2. To show that $Y \in \mathbb{NP}$ is \mathbb{NP} -complete, it suffices to show 3-SAT $\leq Y$. Thousands of problems have been proven to be **NP**-complete!

Cook-Levin theorem. 3-SAT is **NP**-complete. Pioneering result in computer science! *how can we prove* $X \leq 3$ -SAT *if we don't know X?*

Corollary 1. 3-SAT can be solved in poly-time if and only if $P = NP$.

Stephen Cook (1971)

Leonid Levin (1971)

NP-complete problems

35

6,000*+ scientific papers per year.*

field of study NP-complete problem

Computer sience / Math *maxcut, longest path, vertex cover, 3-SAT,…*

Aerospace engineering *optimal mesh partitioning for finite elements* Biology *phylogeny reconstruction* Chemical engineering *heat exchanger network synthesis* Chemistry *protein folding* Civil engineering *equilibrium of urban traffic flow* Economics *computation of arbitrage in financial markets with friction* Electrical engineering *VLSI layout* Environmental engineering *optimal placement of contaminant sensors* Financial engineering *minimum risk portfolio of given return* Game theory *Nash equilibrium that maximizes social welfare* Mechanical engineering *structure of turbulence in sheared flows* Medicine *reconstructing 3d shape from biplane angiocardiogram* Operations research *traveling salesperson problem, integer programming* Physics *partition function of 3d Ising model* Politics *Shapley–Shubik voting power* Pop culture *versions of Sudoku, Checkers, Minesweeper, Tetris* Statistics *optimal experimental design*

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

NP-complete problems are different manifestations of the *same* fundamentally hard problem. Solving any one of them in poly time solves all! *No field-specific math insights are required!*

Suppose that *X* **is NP-complete. What can you infer?**

A. *X* ∈ **NP.**

- **B.** If *X* can be solved in poly-time, then $P = NP$.
- **C.** If *X* cannot be solved in poly-time, then $P \neq NP$.
- **D.** If *Y* ∈ **NP** and *X* \leq *Y* then *Y* is **NP**-complete.
- **E.** All of the above.

36

INTRACTABILITY

‣ *introduction*

‣ *P vs. NP*

‣ *poly-time reductions*

‣ *NP-completeness*

‣ *dealing with intractability*

‣ *Leveraging intractability*

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

<https://algs4.cs.princeton.edu>

Dealing with intractability

Approaches to coping with intractability

… so your problem is **NP**-complete

Safe to assume it is intractable: no worst-case poly-time algorithm solves all problem instances.

Do you need to solve *all* instances?

Model real-world instances. Worst-case inputs might not arise in practical applications.

Do you need the exact *optimal* solution?

Approximation algorithms. Look for good (though potentially suboptimal) solutions.

protein folding is **NP***-complete*

Vertex cover

A vertex cover of a graph *G* is a set of vertices such that every edge in *G* has at least one endpoint in the set.

 VC (decision): Given G , k , is $OPT(G) \leq k$? VC (α -approx): Return a VC of size $\leq \alpha \cdot OPT(G)$. \longleftarrow want $\alpha > 1$ as small as possible (min problem) **NP**-complete

 $OPT(G)$ is the minimum size of a VC for G .

Detour: maximal matching

A matching in a graph *G* is a set of edges where no two edges share a common endpoint. A maximal matching is a matching that cannot be extended by including an additional edge.

Greedy algorithm: $M = \emptyset$. Iterate through the edges, adding an edge e to M if neither endpoint $\longleftarrow \Theta(E+V)$ of e is shared with any edge already in M .

Algorithm.

Find a maximal matching M in G. Return the set S of all endpoints of edges in M.

Claim. For every *G*, the algorithm returns a VC of size $\leq 2 \cdot OPT(G)$.

Proof.

S is a VC: Otherwise, there is an edge e with no endpoint in S. e can be added to M , contradicting M 's maximality.

 $|S| \leq 2 \cdot OPT(G)$: Let S^* be a minimum VC.

Since M is a matching, the endpoints of all edges in M are distinct. For every edge in M , at least one of its endpoints is in S^* . $|S_0, |S| = 2|M| \leq 2|S^*|.$

 $\rightarrow \Theta(E+V)$

maximal matching

conjectured to be optimal

3-SAT: randomized 7/8-approximation algorithm

want $\alpha < 1$ *as large as possible (max problem)*

optimal! (*unless* $P = NP$ *)*

 $OPT(I)$ is the maximum fraction of equations in *I* that can be satisfied. 3-SAT (decision): Given *I*, *k*, is $OPT(I) \ge k$? \longleftarrow NP-complete *often k* = 1

Algorithm. Generate $100m$ random assignments and return the one that satisfies the most equations. *polynomial time m = # of equations*

Claim. For any *I*, with probability .99, the returned assignment satisfies \geq 7/8 fraction of the equations.

Proof idea. A core observation is that a random assignment satisfied each equation with probability 7/8. E.g., " $\neg x_5$ *or* x_8 *or* $\neg x_9 = true$ " is not satisfied only when $x_5 = T, x_8 = F, x_9 = T$, which happens with probability $(1/2)^3$.

assume 3 district variables in an equation

3-SAT (α -approx): Given *I* , return an assignment that satisfies $\geq \alpha \cdot OPT(I)$ fraction of the equations.

The field of hardness of approximation studies the optimal α achievable for different **NP-**complete problems.

-approximation algorithm: *α*

For a *minimization* problems: return a solution with value $\leq \alpha \cdot OPT$, $\alpha > 1$. For a *maximization* problems: return a solution with value $\ge \alpha \cdot OPT$, $\alpha < 1$.

An **NP**-complete problem may admit a *polynomial-time α*-approximation algorithm:

- For no constant α . *α hard to solve with any precision*
- For some constant α (e.g., 2, 1/2 or 7/8). *α*
- For every $\alpha \neq 0$, 1 (PTAS/FPTAS). $\alpha \neq 0$, 1 (PTAS/FPTAS). \longleftarrow easy to solve with any precision, *hard to solve exactly*

easy to solve with precision α , *hard with better precision α*

INTRACTABILITY

‣ *introduction*

‣ *P vs. NP*

‣ *poly-time reductions*

‣ *NP-completeness*

‣ *dealing with intractability*

‣ *Leveraging intractability*

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

<https://algs4.cs.princeton.edu>

Leveraging intractability: guiding scientific inquiry

- 1926. Ising introduces a mathematical model for ferromagnetism.
- 1930s. Closed form solution is a holy grail of statistical mechanics.
- 1944. Onsager finds closed form solution to 2D version in tour de force.
- 1950s. Feynman (and others) seek closed form solution to 3D version.
- 2000. Istrail shows that ISING-3D is **NP**-complete.

Bottom line. Search for a closed formula seems futile.

Secure password system. A user creates a password to enable login to their account. How can the server store the password securely?

Solution. Convert password into two large primes p, q . Server stores only the product $N = pq$. To log in, user provides p, q . The server computes the product and compares to N . Server: Multiply two integers (efficient).

Malicious user: Solve factorization (conjectured to be intractable).

 $P = NP \implies no \text{ crypto!}$

Ron Rivest Adi Shamir Len Adelman

Verified by **VISA**

-
-

Leveraging intractability: derandomization

Fun game 2. I toss a coin; you can use your computer to guess how it will land. What's the probability you guess correctly?

Fun game 3. I toss a coin; you are a Martian with complete knowledge of the physics of the universe and access to sophisticated equipment. You guess how it will land—what's the probability you guess correctly?

Fun game. I toss a coin; you guess how it will land. What's the probability you guess correctly? *50%*

Hardness vs. Randomness. The outcome of intractable problems often appears random. We can feed such outcomes to randomized algorithms instead of real randomness, thereby making them deterministic.

Randomness is in the eye of the beholder! computational power

still 50%…

100%?

The nature of this conjecture is such that I cannot prove it […]. Nor do I expect it to be proven."

" *Now my general conjecture is as follows: for almost all sufficiently complex types of enciphering, […] the mean key computation length increases exponentially with the length of the key […].*

— John Nash

