Algorithms

Robert Sedgewick | Kevin Wayne

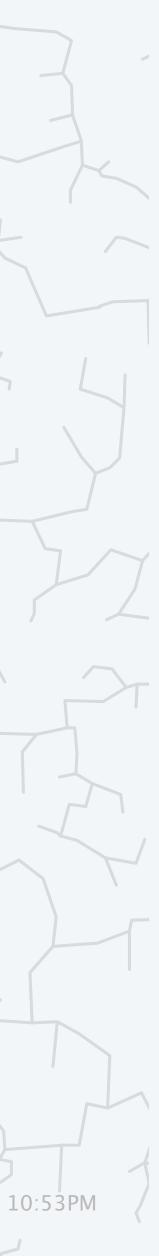
https://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

2.4 PRIORITY QUEUES

elementary implementations

Last updated on 9/25/24 10:53PM



2.4 PRIORITY QUEUES

► APIs

binary heaps

heapsort

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

- elementary implementations

Collections

A collection is a data type that stores a group of items.

data type	core operations	
stack	Push, Pop	
queue	Enqueue, Dequeue	
deque	Add–First, Remove–First, Add–Last, Remove–Last	
priority queue	INSERT, DELETE-MAX	
symbol table	Put, Get, Delete	
set	Add, Contains, Delete	

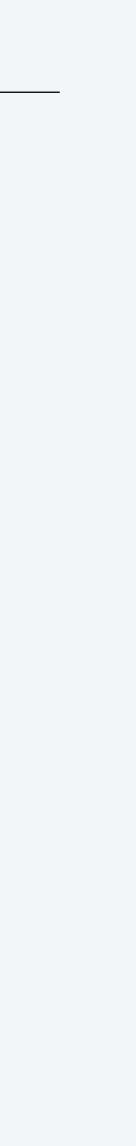
data structure

singly linked list resizable array

doubly linked list resizable array

binary heap

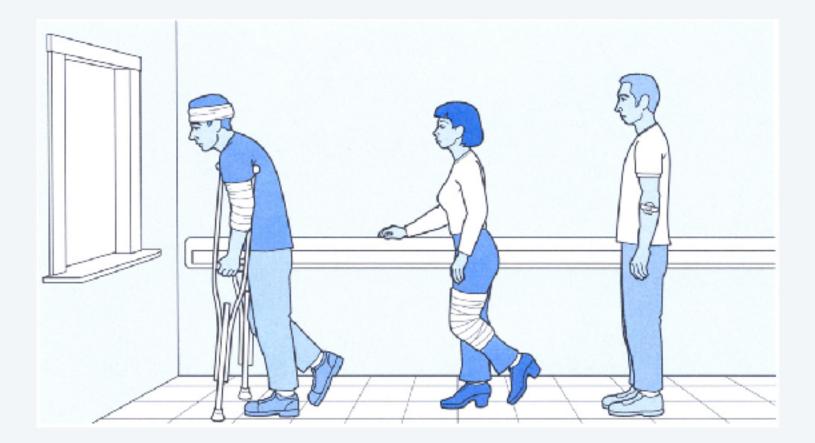
binary search tree hash table



Collections. Insert and remove items. Which item to remove?

Stack. Remove the item most recently added. Queue. Remove the item least recently added. Randomized queue. Remove a random item.

Priority queue. Remove the largest (or smallest) item.



triage in an emergency room (priority = urgency of wound/illness)

operation	argument	return value
insert	Р	
insert	Q	
insert	E	
remove max	•	Q
insert	Х	
insert	А	
insert	М	
remove max	•	X
insert	Р	
insert	L	
insert	Е	
remove max	•	Р

Max-oriented priority queue API

"bounded type parameter"

public class MaxPQ<Key extends Comparable<Key>>

	MaxPQ()	create an er
void	insert(Key key)	insert a key
Кеу	delMax()	return and r
Кеу	max()	return a lar
boolean	<pre>isEmpty()</pre>	is the priori
int	size()	number of k

Note 1. Keys are generic, but must be Comparable. Note 2. Duplicate keys allowed; delMax() removes and returns any maximum key.

empty priority queue

remove a largest key

rgest key

rity queue empty?

keys in the priority queue

Min-oriented priority queue API

Analogous to MaxPQ.

public c	lass <mark>MinPQ</mark> <key ext<="" th=""><th>ends Compa</th></key>	ends Compa
	MinPQ()	create an ei
void	insert(Key key)	insert a key
Кеу	<pre>delMin()</pre>	return and i
Кеу	min()	return a sm
boolean	isEmpty()	is the priori
int	<pre>size()</pre>	number of k

Warmup client. Sort a stream of integers from standard input.

arable<Key>>

empty priority queue

remove a smallest key

nallest key

rity queue empty?

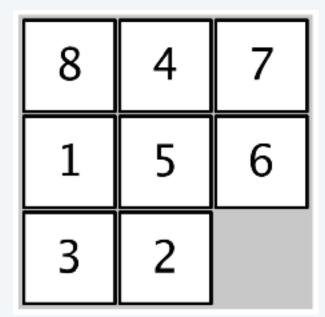
keys in the priority queue

Priority queue: applications

- Event-driven simulation.
- Discrete optimization.
- Artificial intelligence.
- Computer networks.
- Data compression.
- Operating systems.
- Graph searching.
- Number theory.
- Spam filtering.
- Statistics.

priority = length of best known path

- [bin packing, scheduling]
- [A* search]
- web cache]
- Huffman codes]
- [load balancing, interrupt handling]
- Dijkstra's algorithm, Prim's algorithm]
- sum of powers]
- Bayesian spam filter]
- online median in data stream]



priority = "distance" to goal board

customers in a line, colliding particles]



priority = event time

2.4 PRIORITY QUEUES

· APIs

binary heaps

heapsort

Algorithms

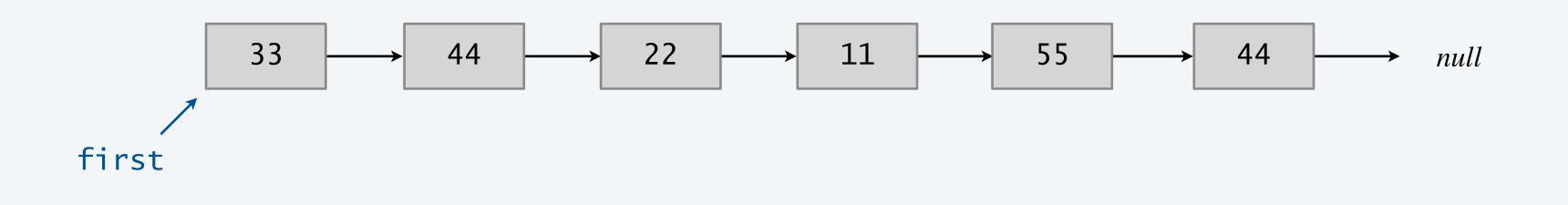
Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

elementary implementations

Priority queue: elementary implementations

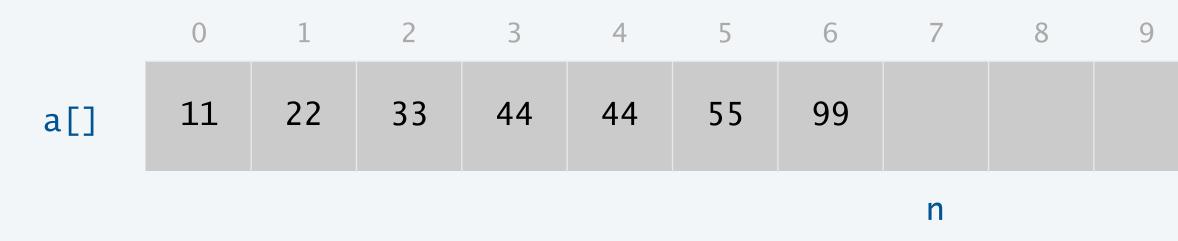
Unordered list. Store keys in a singly linked list.



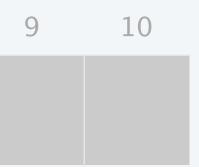
Performance. INSERT takes $\Theta(1)$ time; DELETE-MAX takes $\Theta(n)$ time.

Priority queue: elementary implementations

Ordered array. Store keys in an array in ascending (or descending) order.

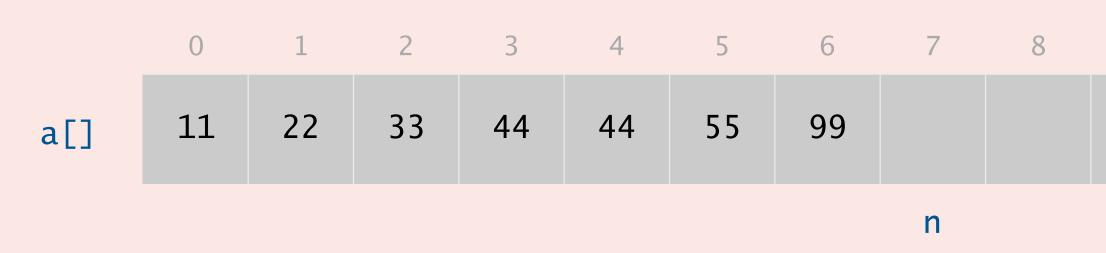


ordered array implementation of a MaxPQ



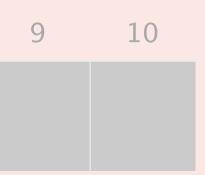
What are the worst-case running times for INSERT and DELETE-MAX, respectively, in a MaxPQ implemented with an ordered array ?

- **A.** $\Theta(1)$ and $\Theta(n)$
- **B.** $\Theta(1)$ and $\Theta(\log n)$
- **C.** $\Theta(\log n)$ and $\Theta(1)$
- **D.** $\Theta(n)$ and $\Theta(1)$



ordered array implementation of a MaxPQ

ignore array resizing



Priority queue: implementations cost summary

Elementary implementations. Either INSERT or DELETE-MAX takes $\Theta(n)$ time.

implementation	INSERT	DELET
unordered list	1	
ordered array	п	
goal	log n	lo

order of growth of running time for priority queue with n items

Challenge. Implement both INSERT and DELETE-MAX efficiently.

2.4 PRIORITY QUEUES

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

- elementary implementations

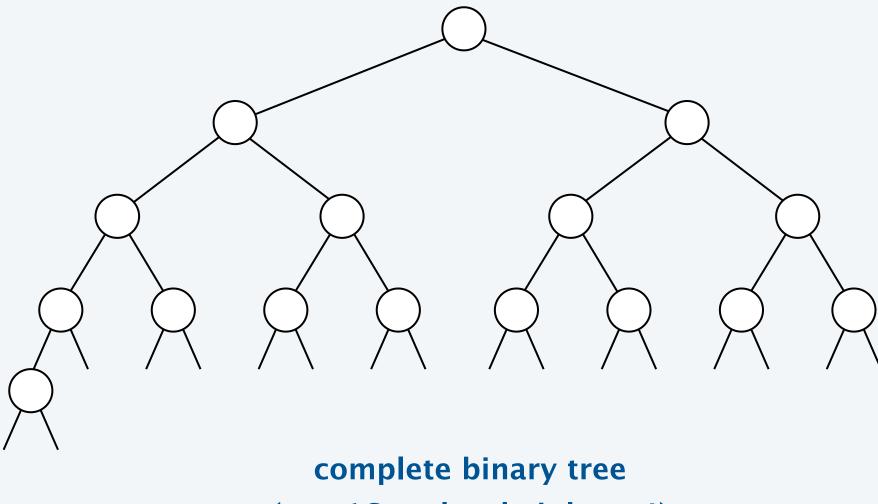
binary heaps

- APIs

heapsort

Binary tree. Empty or node with links to two disjoint binary trees (left and right subtrees).

Complete tree. Every level (except possibly the last) is completely filled; the last level is filled from left to right.



(n = 16 nodes, height = 4)

Property. Height of complete binary tree with *n* nodes is $\lfloor \log_2 n \rfloor$. **Pf.** As you successively add nodes, height increases (by 1) only when *n* is a power of 2.

A complete binary tree in nature (of height 4)

Binary heap: representation

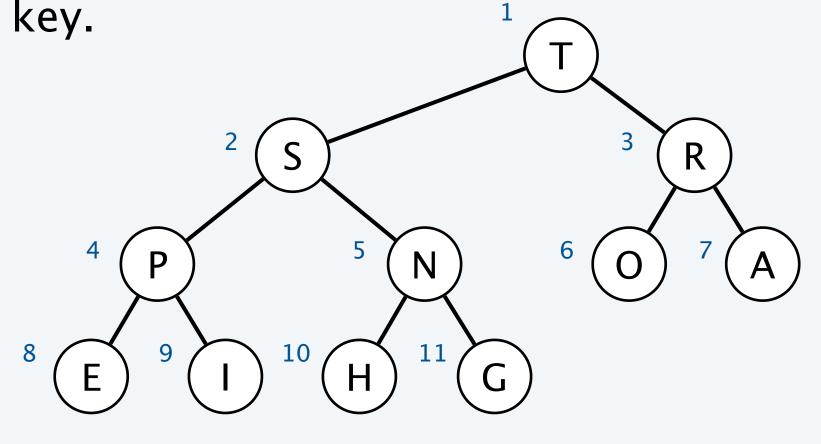
Binary heap. Array representation of a heap-ordered complete binary tree.

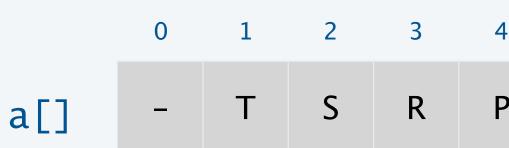
Heap-ordered tree.

- Keys in nodes.
- Child's key no larger than parent's key.

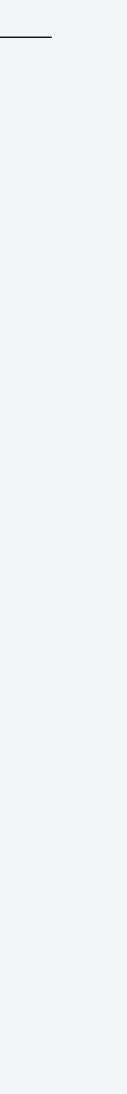
Array representation.

- Indices start at 1.
- Take nodes in level order.
- No explicit links!





4	5	6	7	8	9	10	11
P	Ν	0	A	E	I	Н	G



Consider the node at index k in a binary heap. Which Java expression produces the index of its parent?

- **A.** (k 1) / 2
- **B.** k / 2
- **C.** (k + 1) / 2
- **D.** 2 * k



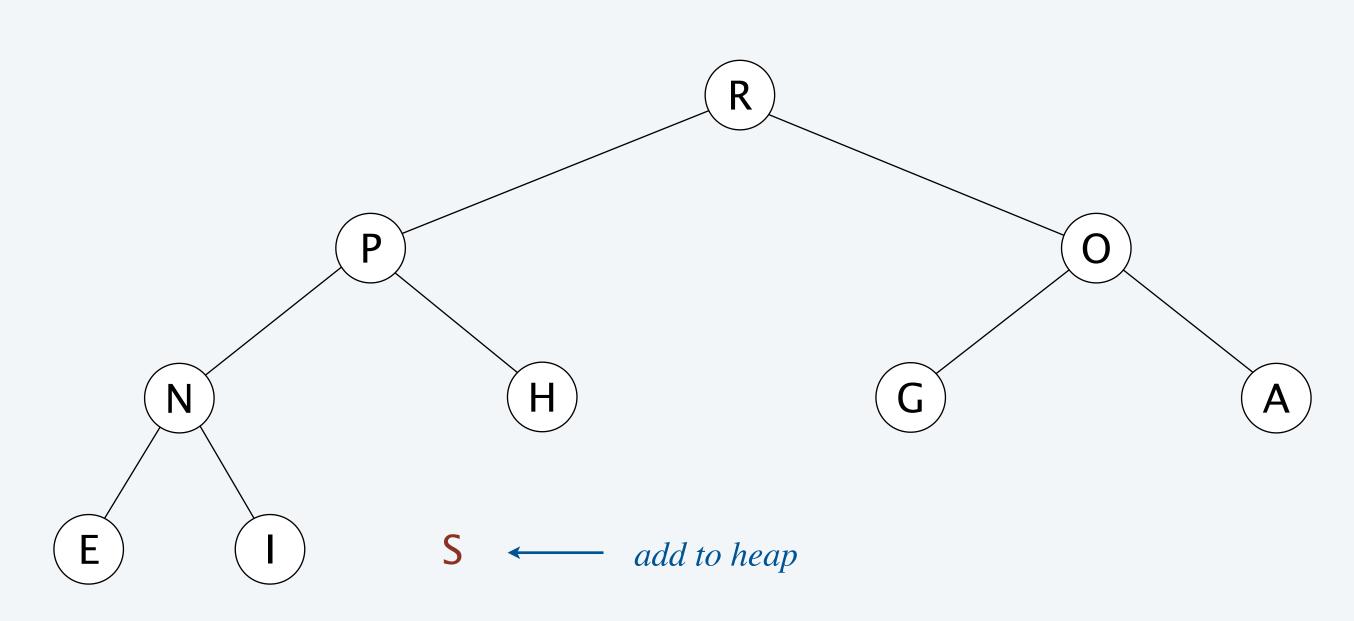
	0	1	2	3	4	5	6	7	8	9	10	11
a[]	-	т	S	R	Р	Ν	0	А	Ε	Т	Н	G

Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

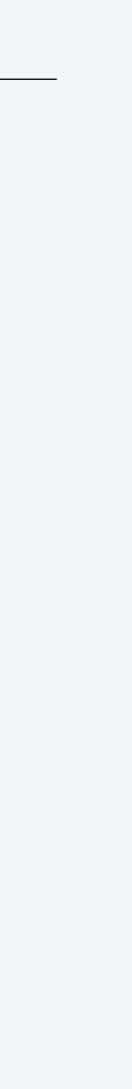
insert S



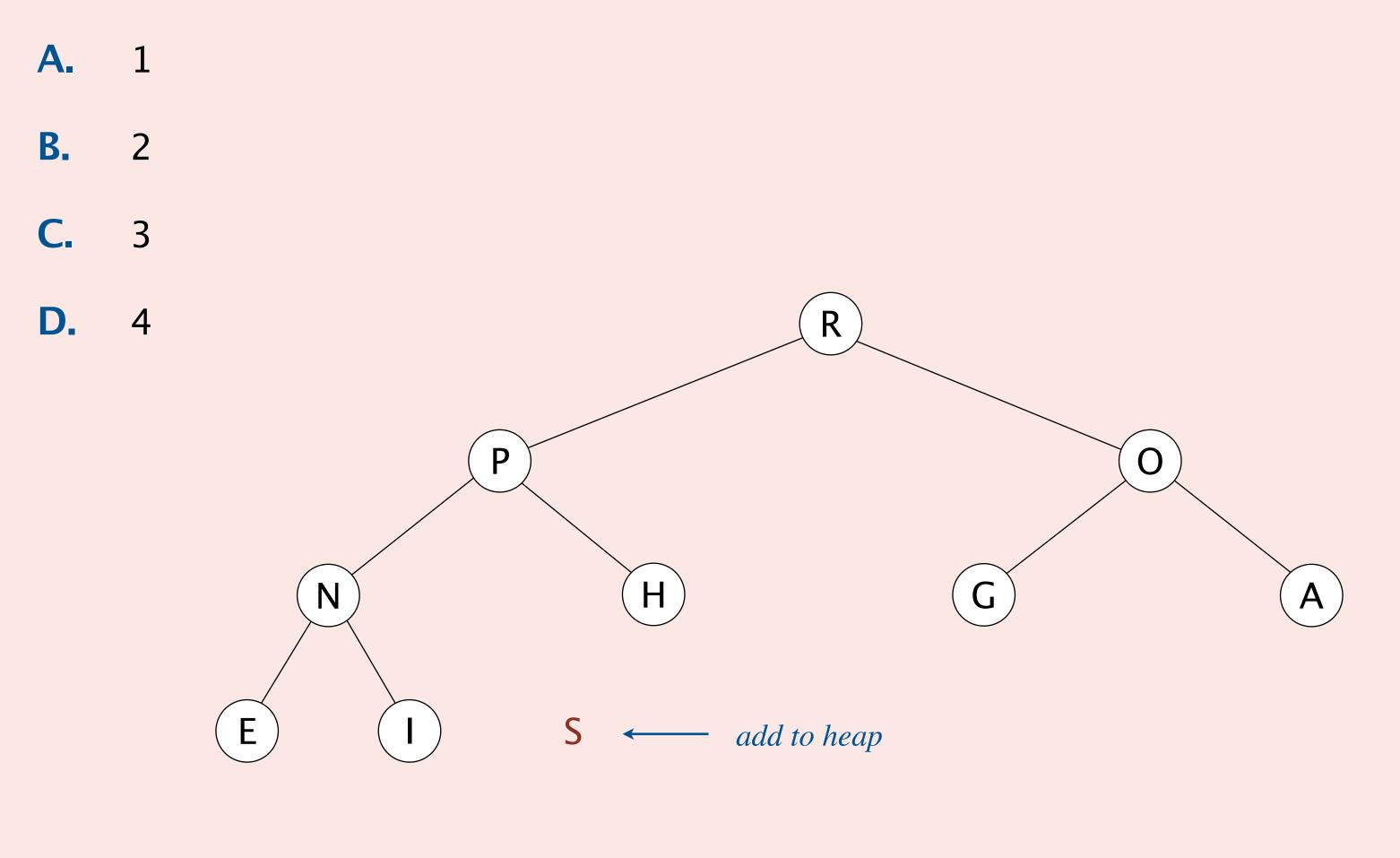
R	Р	0	Ν	Н	G	Α	E

10

S



How many exchanges to insert S?

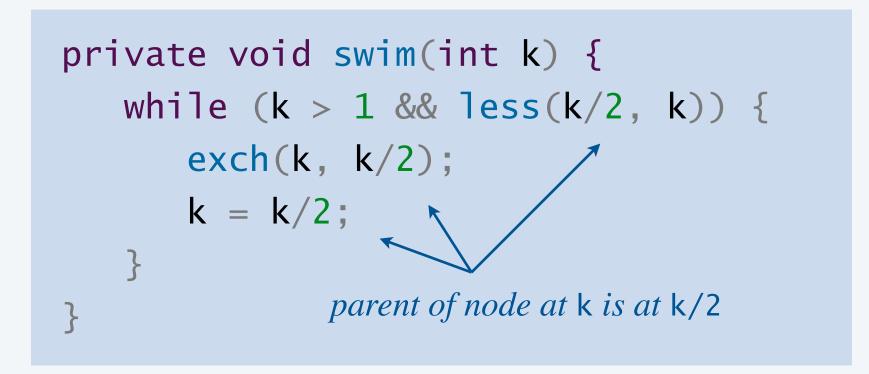


R	Р	0	Ν	н	G	А	Ε
	-	U				~ ~	

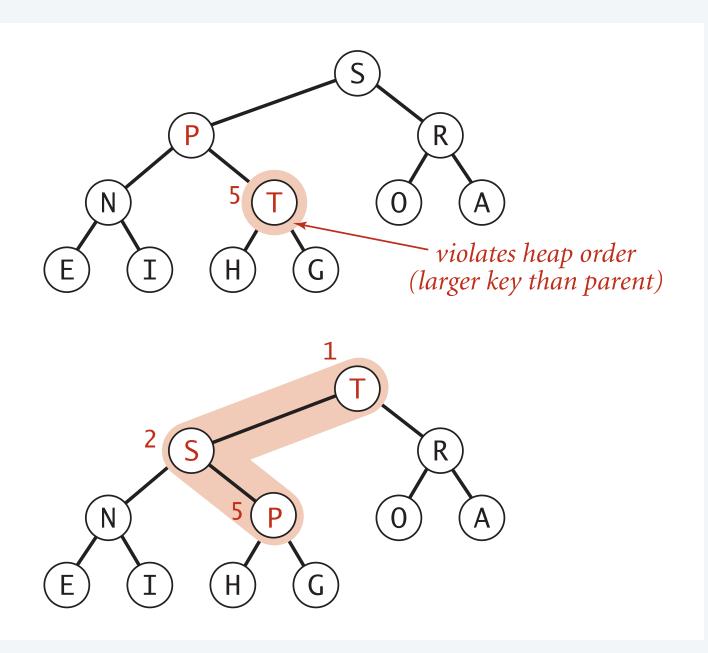
Scenario. Key in node becomes larger than key in parent's node.

To eliminate the violation:

- Exchange key in child node with key in parent node.
- Repeat until heap order restored.

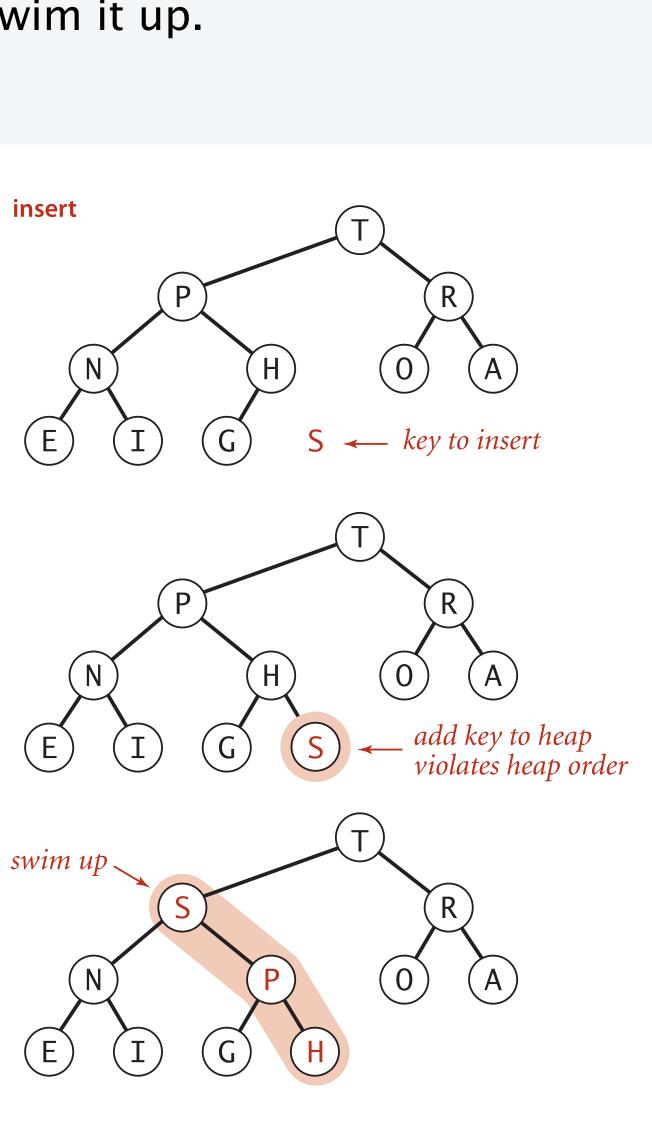


Peter principle. Node promoted to level of incompetence.



Insert. Add node at end in bottom level; then, swim it up. **Cost.** At most $1 + \log_2 n$ compares.

```
public void insert(Key x) {
   pq[++n] = x;
   swim(n);
```



swim up.

Scenario. Key in node becomes smaller than one (or both) of keys in childrens' nodes.

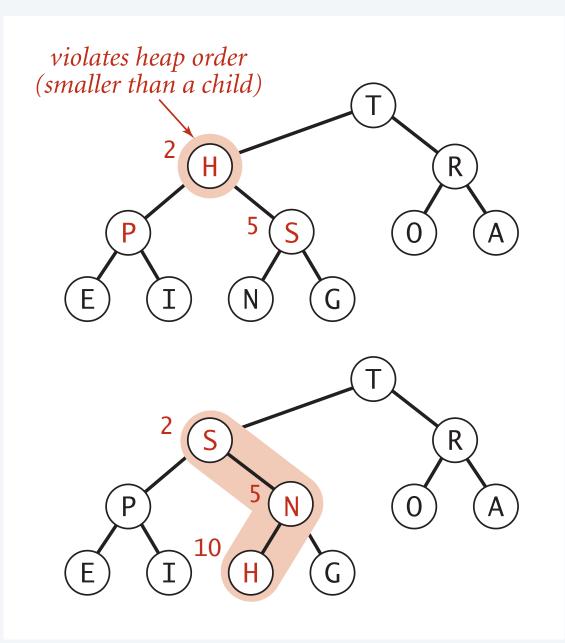
To eliminate the violation:

- Exchange key in parent node with key in larger child's node.
- Repeat until heap order restored.

```
private void sink(int k) {
                             children of node at k
                         are at 2*k and 2*k+1
   while (2*k \le n) {
      int j = 2 k;
      if (j < n && less(j, j+1))
         j++;
      if (!less(k, j)) break;
      exch(k, j);
      k = j;
```

Power struggle. Better subordinate promoted.

why not smaller child?

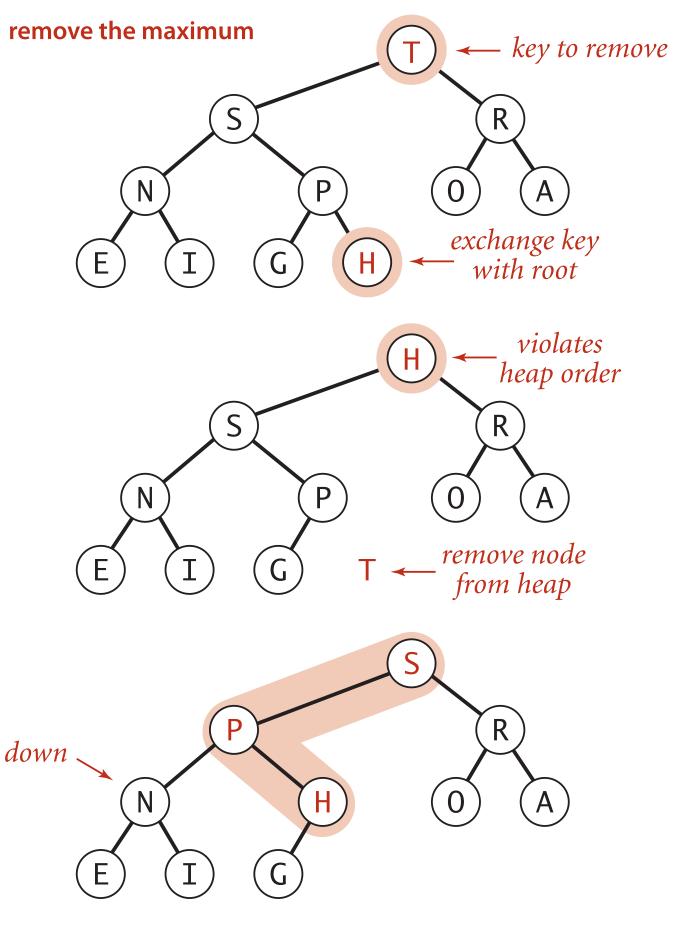


Binary heap: delete the maximum

Delete max. Exchange root with node at end; then, sink it down. **Cost.** At most $2 \log_2 n$ compares.

```
public Key delMax() {
   Key max = pq[1];
  exch(1, n--);
   sink(1);
   pq[n+1] = null; prevent loitering
   return max;
}
```

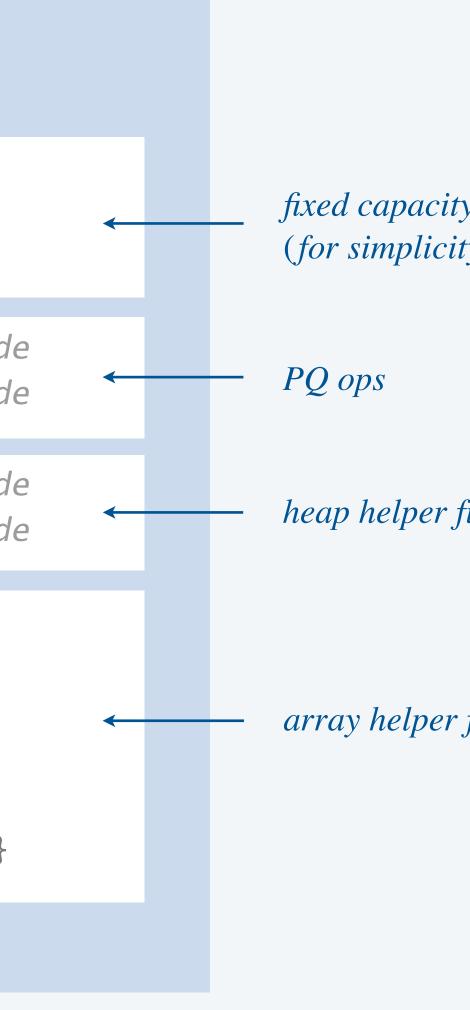
sink down



Binary heap: Java implementation

```
public class MaxPQ<Key extends Comparable<Key>> {
  private Key[] a;
  private int n;
  public MaxPQ(int capacity) {
     a = (Key[]) new Comparable[capacity+1];
   }
  public void insert(Key key) // see previous code
  public Key delMax() // see previous code
  private void swim(int k) // see previous code
  private void sink(int k) // see previous code
  private boolean less(int i, int j) {
     return a[i].compareTo(a[j]) < 0;</pre>
  }
  private void exch(int i, int j)
  { Key temp = a[i]; a[i] = a[j]; a[j] = temp; }
```

https://algs4.cs.princeton.edu/24pq/MaxPQ.java.html



fixed capacity (for simplicity)

heap helper functions

array helper functions

Priority queue: implementations cost summary

Goal. Implement both INSERT and DELETE-MAX in $\Theta(\log n)$ time.

implementation	INSERT	Delete-Max	MAX
unordered list	1	п	п
ordered array	п	1	1
goal	$\log n$	$\log n$	1

order of growth of running time for priority queue with n items

Underflow and overflow.

- Underflow: throw exception if deleting from empty PQ.
- Overflow: add no-arg constructor and use resizing array.

Minimum–oriented priority queue.

- Replace less() with greater().
- Implement greater().

Other operations.

- Remove an arbitrary item.
- Change the priority of an item.

can implement efficiently with sink() and swim() [stay tuned for Prim/Dijkstra]

Immutability of keys.

- Assumption: client does not change keys while they're on the PQ.
- Best practice: use immutable keys.

immutable in Java: String, Integer, Double, ...

leads to O(log *n*) *amortized time per op* (how to make worst case?)

Priority queue with DELETE-RANDOM

Goal. Design an efficient data structure to support the following API:

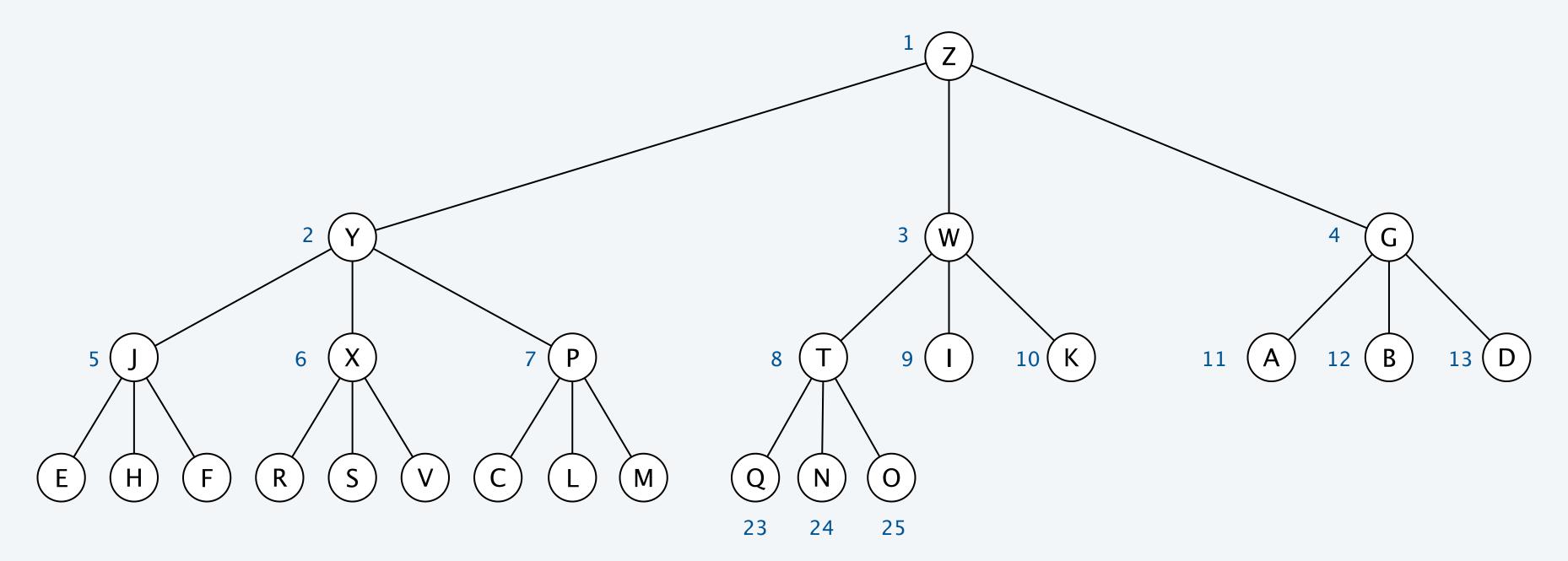
- INSERT: insert a key.
- DELETE-MAX: return and remove a largest key.
- **SAMPLE**: return a random key.
- **DELETE-RANDOM**: return and remove a random key.

Midterm 2012 Spring 2012

Multiway heaps.

- Complete *d*-way tree.
- Child's key no larger than parent's key.

Property. Height of complete *d*-way tree on *n* nodes is $\sim \log_d n$. **Property.** Children of key at index *k* at indices 3k - 1, 3k, and 3k + 1; parent at $\lfloor (k + 1) / 3 \rfloor$.



³⁻way heap



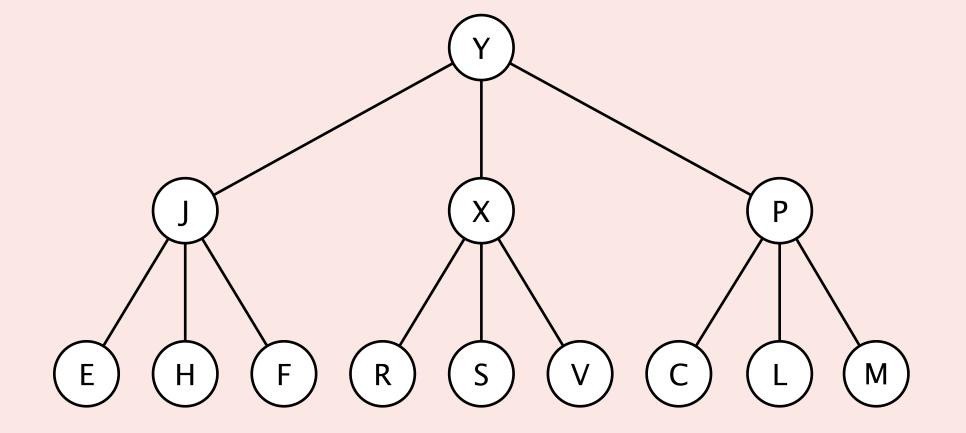
In the worst case, how many compares to INSERT and DELETE-MAX in a *d*-way heap as function of both *n* and *d*?

A.
$$\sim \log_d n$$
 and $\sim \log_d n$

B.
$$\sim \log_d n$$
 and $\sim d \log_d n$

C. ~
$$d \log_d n$$
 and ~ $\log_d n$

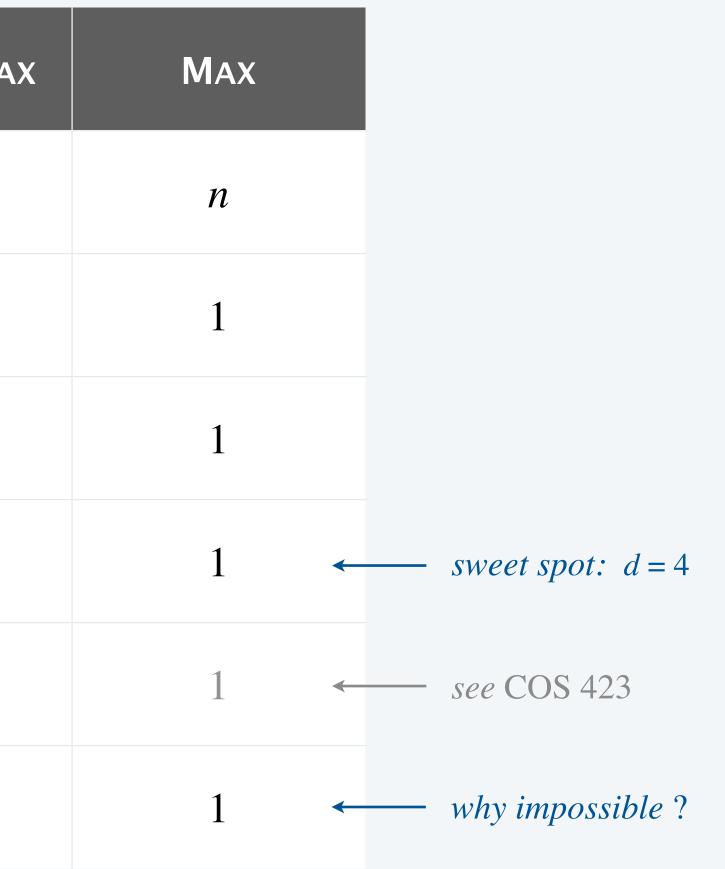
D.
$$\sim d \log_d n$$
 and $\sim d \log_d n$



Priority queue: implementation cost summary

implementation	INSERT	Delete-Ma
unordered list	1	п
ordered array	п	1
binary heap	log n	log n
d-ary heap	$\log_d n$	$d\log_d n$
Fibonacci	1	log n
impossible	1	1

order-of-growth of running time for priority queue with n items



Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

2.4 PRIORITY QUEUES

► APIs

binary heaps

heapsort

- elementary implementations

What are the properties of this sorting algorithm?

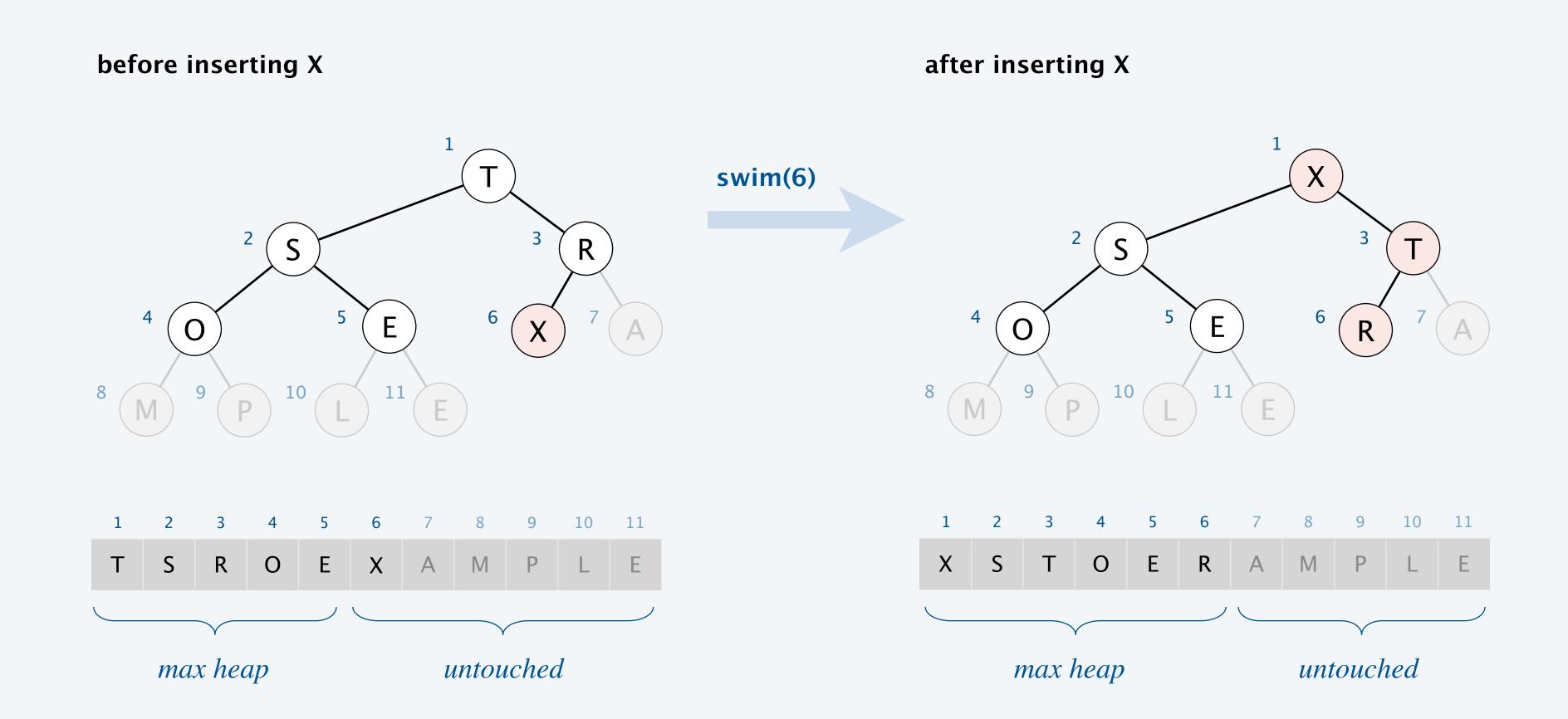
```
public void sort(String[] a) {
    int n = a.length;
    MinPQ<String> pq = new MinPQ<String>();
    for (int i = 0; i < n; i++)
        pq.insert(a[i]);
    for (int i = 0; i < n; i++)
        a[i] = pq.delMin();
}</pre>
```

- A. $\Theta(n \log n)$ compares in the worst case.
- **B.** In-place.
- C. Stable.
- **D.** All of the above.

Heapsort: top-down heap construction

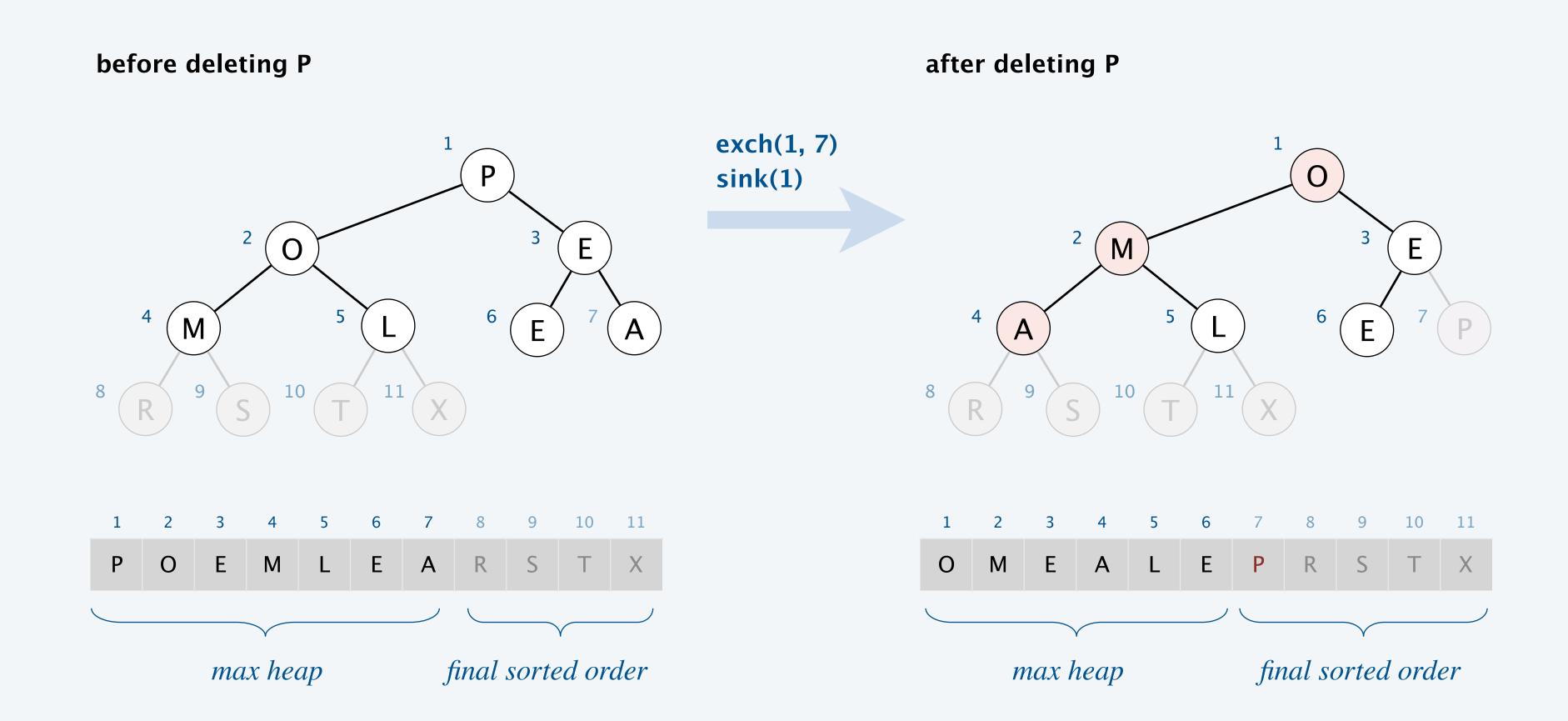
Phase 1 (top-down heap construction).

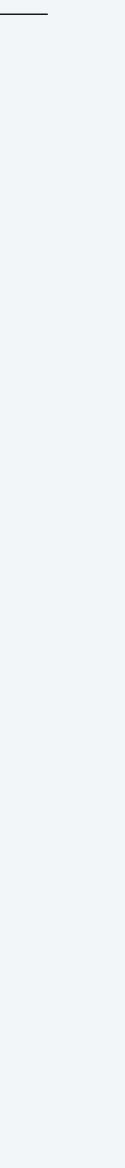
- View input array as complete binary tree.
- Insert keys into a max heap, one at a time.



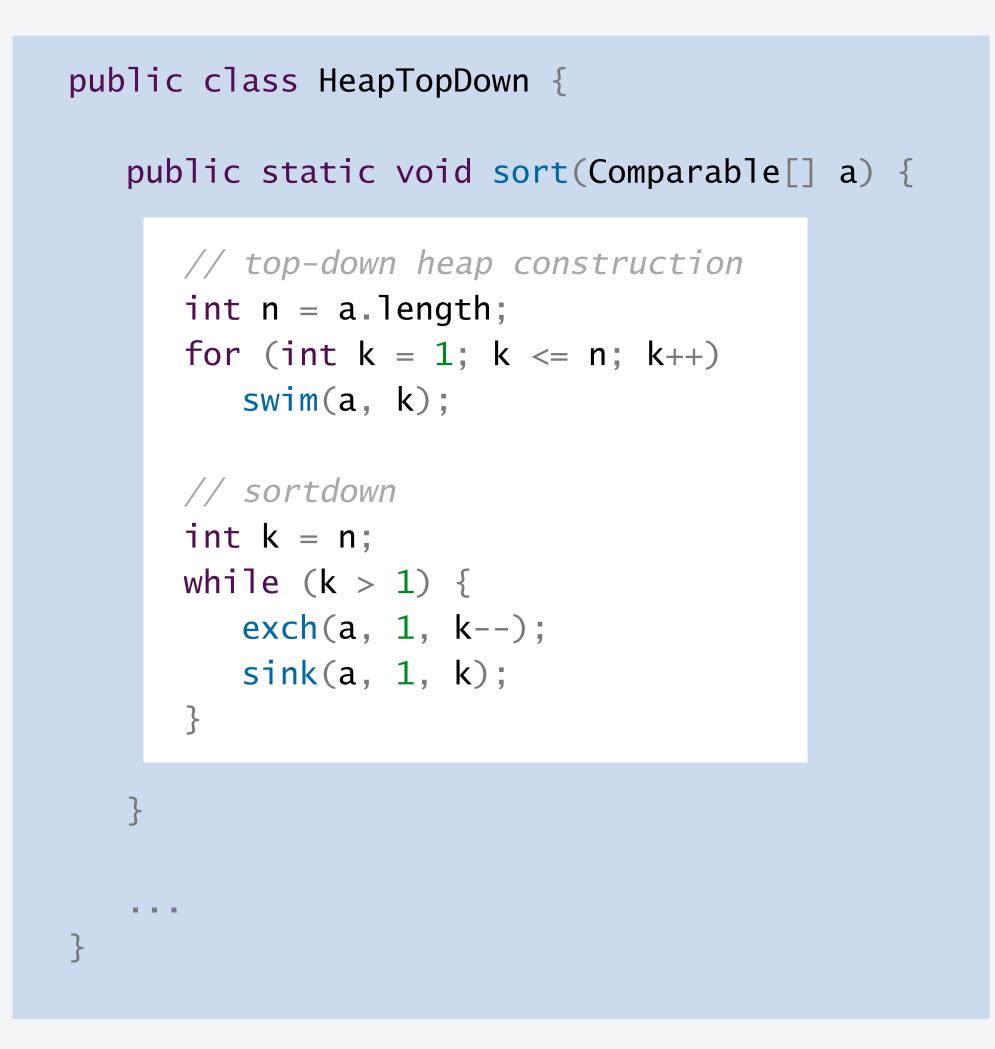
Phase 2 (sortdown).

- Remove the maximum, one at a time.
- Leave in array (instead of nulling out).

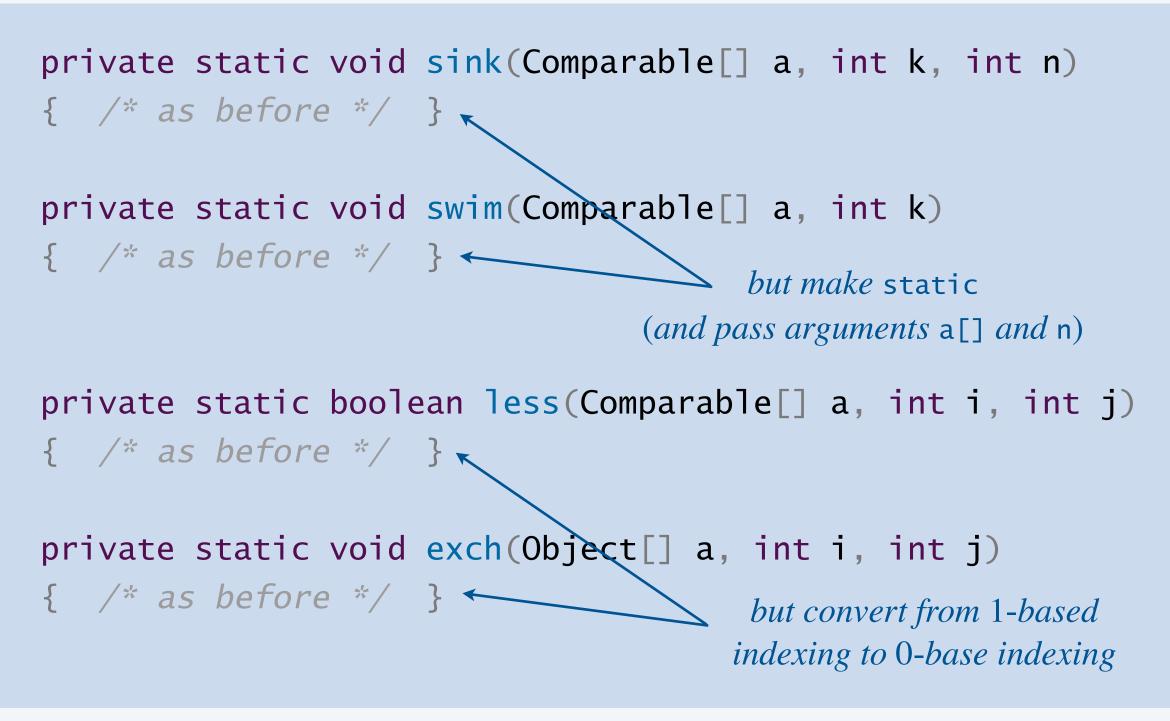


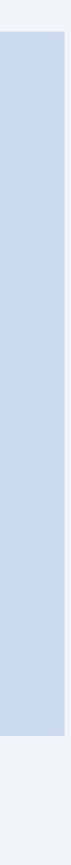


Heapsort: Java implementation



https://algs4.cs.princeton.edu/24pq/HeapTopDown.java.html





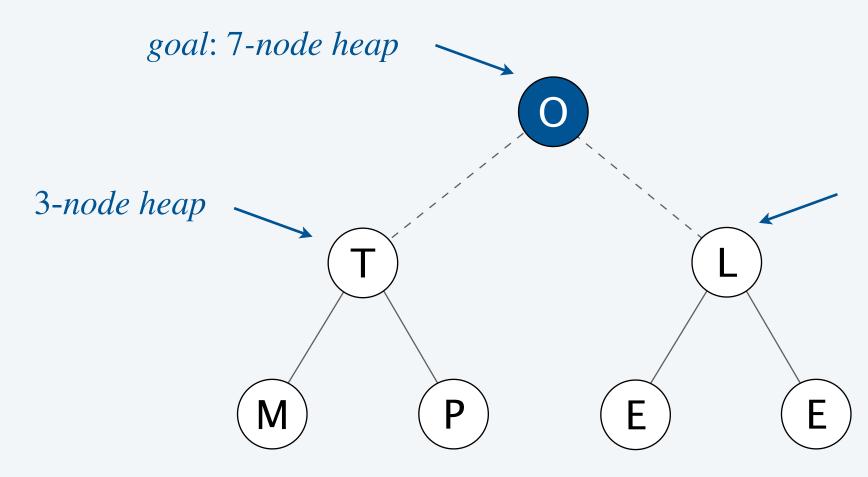
Heapsort: mathematical analysis

Proposition. Heapsort uses only $\Theta(1)$ extra space.

Proposition. Heapsort makes $\leq 3 n \log_2 n$ compares (and $\leq 2 n \log_2 n$ exchanges).

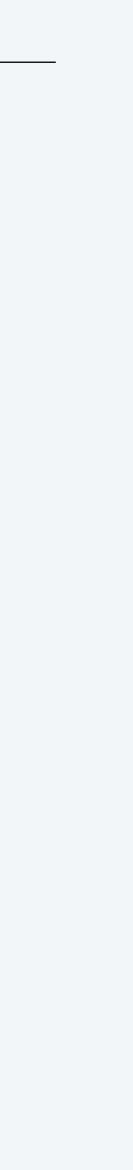
- Top-down heap construction: $\leq n \log_2 n$ compares (and exchanges).
- Sortdown: $\leq 2n \log_2 n$ compares (and $\leq n \log_2 n$ exchanges).

Bottom-up heap construction. [see book] Successively building larger heap from smaller ones. Proposition. Makes $\leq 2 n$ compares (and $\leq n$ exchanges).



```
nd \leq 2 n \log_2 n exchanges).
(and exchanges).
hanges).
```

3-node heap



Significance. In-place sorting algorithm with $\Theta(n \log n)$ worst-case runtime.

- Mergesort: no, $\Theta(n)$ extra space. \leftarrow *in-place merge possible; not practical*
- Quicksort: no, $\Theta(n^2)$ time in worst case. $\longleftarrow \Theta(n \log n)$ worst-case quicksort possible; not practical
- Heapsort: yes!

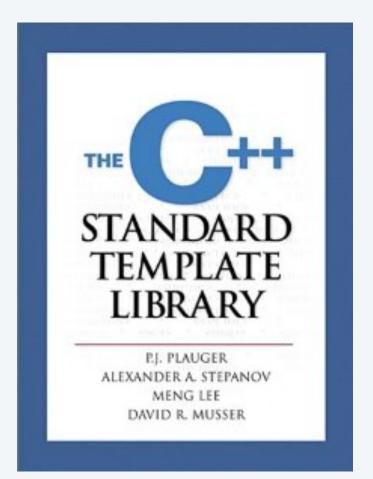
Bottom line. Heapsort is optimal for both time and space, **but**:

- Inner loop longer than quicksort's.
- Not stable.

Goal. As fast as quicksort in practice; in place; $\Theta(n \log n)$ worst case.

Introsort.

- Run quicksort.
- Cutoff to heapsort if function-call stack depth exceeds $2 \log_2 n$.
- Cutoff to insertion sort for $n \le 16$.



In the wild. C++ STL, Microsoft .NET Framework, Go.

Sorting algorithms: summary

	in-place?	stable?	best	average	worst	remarks
selection	✓		$\frac{1}{2} n^2$		$\frac{1}{2} n^2$	n exchanges
insertion	✓	¥	п		$\frac{1}{2} n^2$	use for small n or partially ordered
merge		¥	$\frac{1}{2} n \log_2 n$		$n \log_2 n$	can be made in-place (but impractical)
quick	✓		$n \log_2 n$	2 <i>n</i> ln <i>n</i>	$\frac{1}{2} n^2$	fastest in practice; can be made worst-case $\Theta(n \log n)$ (but impractical)
3-way quick	¥		п	2 <i>n</i> ln <i>n</i>	$\frac{1}{2} n^2$	improves quicksort when duplicate keys
heap	¥		3 n		$2 n \log_2 n$	
?	✓	¥	п	$n \log_2 n$	$n \log_2 n$	holy sorting grail

number of compares to sort an array of n elements

Credits

image

Emergency Room Triage

Car GPS

Complete Binary Tree

Computer and Supercomputer

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

source	license
unknown	
Adobe Stock	Education License
Shlomit Pinter	by author
New York Times	

A final thought



