
COS 226 Algorithms and Data Structures Spring 2024

Midterm

This exam has 8 questions worth a total of 55 points. (Question 9 is extra credit, you can skip it
without losing any points.) You have 80 minutes.

Instructions. This exam is preprocessed by computer. Write neatly, legibly, and darkly. Put all
answers (and nothing else) inside the designated spaces. Fill in bubbles and checkboxes completely:
 and . To change an answer, erase it completely and redo.

Resources. The exam is closed book, except that you are allowed to use a one page reference
sheet (8.5-by-11 paper, one side, in your own handwriting). No electronic devices are permitted.

Honor Code. This exam is governed by Princeton’s Honor Code. Discussing the contents of this
exam before the solutions are posted is a violation of the Honor Code.

Please complete the following information now.

Name:

NetID:

Exam room:

P01 P02 P03 P04 P05 P06 P07 P08

#
Precept:

“I pledge my honor that I will not violate the Honor Code during this examination.”

Signature

2 PRINCETON UNIVERSITY

1. Initialization. (1 point)

In the spaces provided on the front of the exam, write your name, NetID, and exam room; fill
in the bubble of the precept in which you are officially registered; write and sign the Honor
Code pledge.

COS 226 MIDTERM, SPRING 2024 3

2. Heaps and trees. (9 points)

(a) A delMax() operation on the maximum-oriented binary heap on the left produces the
binary heap on the right.

Midterm, Spring 2024

IT

first

G E R

last

nullS

70

10

90

50

30 ?

?

10

70

50

30

Which of the keys below could be the one labeled with a question mark?

Fill in all checkboxes that apply.

25 35 45 55 65

4 PRINCETON UNIVERSITY

(b) The following is a partial level-order traversal of a binary search tree (BST):

80 40 110 ? 100 120 60

Which of the keys below could be the one labeled with a question mark?

Fill in all checkboxes that apply.

30 50 70 90 115

COS 226 MIDTERM, SPRING 2024 5

(c) Consider the following left-leaning red-black BST (some of the edge colors are sup-
pressed):

Midterm, Spring 2024

3

1

9

15

6

red link

4

26

23

19

21

29

25

10

27

Which keys below must be red (a key is red if the link between it and its parent is red)?

Fill in all checkboxes that apply.

19 21 23 25 27 29

6 PRINCETON UNIVERSITY

3. Five sorting algorithms. (5 points)

The leftmost column contains an array of 24 integers to be sorted; the rightmost column
contains the integers in sorted order; the other columns are the contents of the array at some
intermediate step during one of the five sorting algorithms listed below.

Match each algorithm by writing its letter in the box under the corresponding column.
Use each letter exactly once.

81 12 34 12 60 12 12

12 16 12 16 56 16 16

80 21 80 21 43 21 21

21 33 21 30 47 33 30

75 37 75 33 33 37 33

56 43 56 34 37 41 34

43 56 43 37 41 43 37

65 65 65 41 34 56 41

37 75 37 43 21 65 43

33 80 33 47 16 70 47

16 81 16 56 12 71 56

95 95 69 60 30 75 60

85 30 30 85 65 80 65

71 34 71 71 69 81 69

41 41 41 65 70 85 70

70 47 70 70 71 95 71

47 60 47 75 75 47 75

60 69 60 95 80 60 80

34 70 81 81 81 34 81

30 71 85 80 85 30 85

94 85 94 94 86 94 86

86 86 86 86 93 86 93

93 93 93 93 94 93 94

69 94 95 69 95 69 95

A G

A. Original array

B. Selection sort

C. Insertion sort

D. Mergesort
(top-down)

E. Quicksort
(standard, no shuffle)

F. Heapsort

G. Sorted array

COS 226 MIDTERM, SPRING 2024 7

4. Stacks and queues. (6 points)

The following partial code is intended to print the binary representation of the positive in-
teger n to the standard output. For instance, if n = 6 then 110 is printed and if n = 50 then
110010 is printed.

while (n > 0)

{
 stack.push(n % 2);

 n = n / 2;
}

for (int d : collection)

 StdOut.print(d);

1

2

A. Stack<Integer> collection =

 new Stack<Integer>();

B. Queue<Integer> collection =

 new Queue<Integer>();

C. collection.push(n % 10);

D. collection.enqueue(n % 10);

E. collection.push(n % 2);

F. collection.enqueue(n % 2);

(a) Complete the two missing lines of code in the above partial implementation.
For this question, the declaration and implementation of Stack and Queue are as in the
textbook and lectures.

For each numbered oval above, write the letter of the corresponding expression on the
right in the space provided. You may use each letter once, more than once, or not at all.

1 2

(b) How many elements are in collection at the end of the execution of the code?

#

Θ(1) Θ(log logn) Θ(logn) Θ(n) Θ(n logn) Θ(n2
)

(c) Suppose that collection is implemented as a resizable array. How many times would
the array expand its size while running the code?

#

Θ(1) Θ(log logn) Θ(logn) Θ(n) Θ(n logn) Θ(n2
)

8 PRINCETON UNIVERSITY

5. Analysis of algorithms and sorting. (8 points)

Consider an array of 2n elements in the form 1,2n − 1,2,2n − 2,3,2n − 3,4,2n − 4, . . . , n, n.
For example, here is the array when n = 8:

1 15 2 14 3 13 4 12 5 11 6 10 7 9 8 8

How many compares does each sorting algorithm (standard algorithm, from the textbook)
make as a function of n in the worst case? Note that the length of the array is 2n, not n.

For each sorting algorithm, fill in the best matching bubble.

(a) Selection sort

#

∼
1
4n

2
∼

1
2n

2
∼ n2

∼ 2n2
∼ 4n2

(b) Insertion sort

#

∼
1
4n

2
∼

1
2n

2
∼ n2

∼ 2n2
∼ 4n2

COS 226 MIDTERM, SPRING 2024 9

(c) Mergesort

#

∼
1
2n log2 n ∼

3
4n log2 n ∼ n log2 n ∼

3
2n log2 n ∼ 2n log2 n

(d) 3-way Quicksort (using 3-way partition, no shuffle)

#

Θ(logn) Θ(n) Θ(n logn) Θ(n2
) Θ(n4

)

10 PRINCETON UNIVERSITY

6. Asymptotic. (8 points)

Identify each statement as true or false by filling in the appropriate bubble.

true false

#

The loop bellow prints hello ∼ 2n2 times.

for (i = n*n; i > 1; i = i/2)

for (j = 0; j < i; j++)

System.out.println("hello");

#

The reason we implement binary heaps as arrays instead of using
explicit nodes and links is that any implementation using explicit nodes
and links will not allow for insert() and delMax() to both run in
O(logn) time.

#
It is possible to implement a binary search tree (BST) data structure
where insert makes O(

√

logn) compares in the worst case (search and
delete may make any number of compares).

#

Consider an n × n two-dimensional array of integers in which the
integers in each row are in ascending order and the first integer of each
row is greater than the last integer of the previous row. Given an
integer x, it is possible to check if x appears in the array by making
O(logn) compares (recall that log(n2

) = 2 log(n)).

COS 226 MIDTERM, SPRING 2024 11

7. Algorithm design. (8 points)

Given two integer arrays, a[] and b[], the symmetric difference between a[] and b[] is the
set of elements that appear in exactly one of the arrays. Design an algorithm that receives two
sorted arrays, each consisting of n distinct elements, and outputs the size of their symmetric
difference.

Full credit: The running time of the algorithm must be O(n) in the worst case and the
amount of extra memory must be O(1) (the arrays a[] and b[] should not be modified).

Partial credit (at least half credit): The running time of the algorithm must be O(n logn)
in the worst case and the amount of extra memory must be O(n).

Specify the running time and extra memory usage of your solution.

Example (n = 6). If the array a[] is:

3 6 10 14 17 18

and the array b[] is:

2 3 7 12 14 15

then the algorithm should output 8 because 6, 10, 17 and 18 are only in a[] and 2, 7, 12 and
15 are only in b[].

In the space provided, give a concise English description of your algorithm for solving the
problem. You may use any of the algorithms that we have considered in this course (e.g.,
lectures, precepts, textbook, assignments) as subroutines. If you modify such an algorithm, be
sure to describe the modification. Feel free to use code or pseudocode to improve clarity.

The running time of your solution is Θ()

12 PRINCETON UNIVERSITY

8. Data structure design. (10 points)

Design a collection data type that represents the state of n sites, each labeled with a number
from 0 to n − 1. When the collection is constructed, all sites are blocked. The data structure
supports two operations. The first one, open(), takes an integer i between 0 and n − 1 and
marks site i as open (if site i was open before, its state doesn’t change). The second operation,
openLen(), takes an integer i and returns the length of the maximum consecutive sequence
of open sites that includes site i. For example, if site 1 is blocked, sites 2, 3, 4, 5 are open,
and site 6 is blocked, then openLen(3) returns 4.

Midterm, Spring 2024

public class OpenSites

OpenSites(int n) creates a collection of n blocked sites

void open(int i) marks site i as open

int openLen(int i)
returns the length of the maximum consecutive
sequence of open sites that contains i

Example. Here is an example sequence of operations.

Sites highlighted in green are open.

Midterm,  
Spring 2024OpenSites a = new OpenSites(12);

a.open(4); // returns "A"

a.openLen(10); // returns 0

a.open(11); // returns "A"

a.open(2); // returns "A"

a.openLen(2); // returns 1

a.open(5); // returns "A"

a.open(8); // returns 0

a.openLen(4); // returns 2

a.open(3); // returns 4

a.open(2); // returns "A"

a.openLen(4); // returns 4

a.open(0); // returns "A"

a.open(10); // returns "A"

a.openLen(11); // returns 2

a.openLen(6); // returns 0

1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

COS 226 MIDTERM, SPRING 2024 13

Performance requirements. Denote by n the number of sites in the collection (specified
at construction).

Full credit:

� The constructor must take O(n) time in the worst case.

� The open() and openLen() methods must each take O(logn) time in the worst case.

� The data type must use O(n) extra space.

Partial credit (at least half credit): Same performance guarantees as in the full credit
option, except that open() can take time O(n).

(a) Specify the instance variables (along with any supporting nested classes) that you would
use to implement OpenSites. You may use code or pseudocode to improve clarity. You
may use any of the data types that we have considered in this course (either algs4.jar
or java.util versions). If you make any modifications to these data types, describe
them.

14 PRINCETON UNIVERSITY

(b) Give a concise English description of your algorithm for implementing the constructor.
You may use code or pseudocode to improve clarity.

(c) Give a concise English description of your algorithm for implementing open(). You may
use code or pseudocode to improve clarity.

The running time of your implementation of open() is Θ()

COS 226 MIDTERM, SPRING 2024 15

(d) Give a concise English description of your algorithm for implementing openLen().
You may use code or pseudocode to improve clarity.

The running time of your implementation of openLen() is Θ()

16 PRINCETON UNIVERSITY

9. EXTRA CREDIT. (4 extra points)

This question is extra credit. You can skip it without losing any points.

Design an OpenSites data structure as in the previous question, with the additional func-
tionality of blocking a site. That is, in addition to the open() and openLen() methods, the
collection should also support the method void block(int i) that marks site i as blocked
(if site i was blocked before, its state doesn’t change). In addition to the performance re-
quirements of the previous question, the block() method should work in time O(logn).

A solution to this question implies a solution to the previous question. You have the option to
write separate solutions for both questions (this is advisable), or, if you are sure about your
answer to this more challenging problem, you can ask us to only look at your answer to this
problem (this is discouraged).

Please read:

Both my solution to the previous question and my solution to this question.

Only my solution to this question for the credit of both questions.

(a) Specify the instance variables (along with any supporting nested classes) that you would
use to implement OpenSites. You may use code or pseudocode to improve clarity. You
may use any of the data types that we have considered in this course (either algs4.jar
or java.util versions). If you make any modifications to these data types, describe
them.

COS 226 MIDTERM, SPRING 2024 17

(b) Give a concise English description of your algorithm for implementing the constructor.
You may use code or pseudocode to improve clarity.

(c) Give a concise English description of your algorithm for implementing open(). You may
use code or pseudocode to improve clarity.

18 PRINCETON UNIVERSITY

(d) Give a concise English description of your algorithm for implementing openLen().
You may use code or pseudocode to improve clarity.

(e) Give a concise English description of your algorithm for implementing block().
You may use code or pseudocode to improve clarity.

COS 226 MIDTERM, SPRING 2024 19

This page is intentionally blank. You may use this page for scratch work.

