
COS 226 Algorithms and Data Structures Fall 2024

Midterm

This exam has 9 questions worth a total of 55 points. You have 80 minutes.

Instructions. This exam is preprocessed by computer. Write neatly, legibly, and darkly. Put all
answers (and nothing else) inside the designated spaces. Fill in bubbles and checkboxes completely:
 and . To change an answer, erase it completely and redo.

Resources. The exam is closed book, except that you are allowed to use a one page reference
sheet (8.5-by-11 paper, one side, in your own handwriting). No electronic devices are permitted.

Honor Code. This exam is governed by Princeton’s Honor Code. Discussing the contents of this
exam before the solutions are posted is a violation of the Honor Code.

Please complete the following information now.

Name:

NetID:

Exam room:

P01 P02 P03 P05 P06 P07 P08 P09 P10

#
Precept:

“I pledge my honor that I will not violate the Honor Code during this examination.”

Signature

2 PRINCETON UNIVERSITY

1. Initialization. (1 point)

In the spaces provided on the front of the exam, write your name, NetID, and exam room; fill
in the bubble of the precept in which you are officially registered; write and sign the Honor
Code pledge.

2. Asymptotics. (6 points)

(a) How many times will the following code snippet print ‘hello’? Assume that n is divisible
by 100.

for (int i = 1; i <= n; i++)

for (int j = n; j >= i; j--)

for (int k = 1; k <= n; k = k + n/100)

System.out.println("hello");

#
∼ 200n ∼ 50n2

∼ 100n2
∼

1
2n

2 log100 n ∼ n3
/100 100n3

(b) Which of the following expressions describe the growth of the following function?

n log2 n + 3n
√

n − 5n

Fill in all checkboxes that apply.

∼ n
√

n Θ(n log2 n) O(n3
) O(n

√

n) O(n) Ω(logn)

COS 226 MIDTERM, FALL 2024 3

3. Five sorting algorithms. (5 points)

The leftmost column contains an array of 24 integers to be sorted; the rightmost column
contains the integers in sorted order; the other columns are the contents of the array at some
intermediate step during one of the five sorting algorithms listed below.

Match each algorithm by writing its letter in the box under the corresponding column.
Use each letter exactly once.

49 14 14 48 14 57 14

45 22 22 45 15 56 15

14 45 24 14 22 49 22

97 49 37 15 24 45 24

22 57 40 22 37 40 37

57 97 44 44 40 37 40

40 24 45 40 44 48 44

24 40 48 24 45 14 45

65 63 49 37 48 44 48

93 65 57 49 49 24 49

63 68 63 63 56 15 56

68 93 65 68 57 22 57

75 75 68 75 75 58 58

48 48 75 93 65 60 60

37 37 93 65 93 63 63

44 44 97 57 68 64 64

73 73 73 73 73 65 65

15 15 15 97 97 68 68

58 58 58 58 58 73 73

64 64 64 64 64 75 75

88 88 88 88 88 78 78

60 60 60 60 60 88 88

56 56 56 56 63 93 93

78 78 78 78 78 97 97

A G

A. Original array

B. Selection sort

C. Insertion sort

D. Mergesort

E. Quicksort
(standard, no shuffle)

F. Heapsort

G. Sorted array

4 PRINCETON UNIVERSITY

4. Data structure invariants. (6 points)

For each data structure and state below, determine whether it is possible for the state to arise
with a sequence of operations on the associated data type.

(a) A weighted quick-union data structure with the following parent[] array:

0 1 2 3 4 5 6 7 8 9

5 6 0 4 0 5 0 5 6 7

Possible.

Impossible.

(b) A maximum-oriented binary heap corresponding to the following binary tree:

90

80

60

30 40

25

10 20

70

65 35

25 15

Possible.

Impossible.

COS 226 MIDTERM, FALL 2024 5

(c) A binary search tree with the following (integer) keys and links:

25

17

12

5

22

18 28

42

20

Possible.

Impossible.

6 PRINCETON UNIVERSITY

5. Balanced search trees. (6 points)

Consider the following left-leaning red-black BST:

30

20

13

10

9

17

14

25

50

45 57

52

(a) Which of the following 2-3 trees corresponds to the left-leaning red-black tree above?

#

A B C D

A.

30

20

13

10

9

17

14

25

50

45 57

52

B.

30

13 20

9 10 14 17 25

50

45 52 57

C.

20 30

13

9 10 14 17

25 50 52

45 57
D.

30 50

13 20

9 10 14 17 25

45 52 57

COS 226 MIDTERM, FALL 2024 7

(b) Suppose that you insert the key 18 into this red-black BST.
Give the sequence of 4 elementary operations (color flips and rotations) that occur during
the insertion.

Fill in all checkboxes that apply.

operation 1 operation 2 operation 3 operation 4

key

color flip # # # #

rotate left # # # #

rotate right # # # #

Examples of color flips and rotations (for reference):

Midterm, Fall 2019

8

3
8 rotate right

T3
3

8
3 rotate left

3

81

3 color flip

T2T1

T1

T3T2

T1 T2 T3 T4

3

81

T1 T2 T3 T4Midterm, Fall 2019

8

3
8 rotate right

T3
3

8
3 rotate left

3

81

3 color flip

T2T1

T1

T3T2

T1 T2 T3 T4

3

81

T1 T2 T3 T4

8 PRINCETON UNIVERSITY

6. Queues. (5 points)

A self-printing queue is a queue of integers, implemented as a singly linked list, which prints
the contents of the queue to standard output after every three (enqueue or dequeue) opera-
tions. For instance, the sequence enqueue(0), dequeue(), enqueue(0) prints 0.

(a) What does the following sequence of operations on an initially empty self-printing queue
print?

enqueue(0), enqueue(1), dequeue(), enqueue(2), enqueue(3), dequeue(),

enqueue(4), enqueue(5), dequeue(), enqueue(6), enqueue(7), dequeue()

1 2 3 3 4 5 4 5 6 7.

0 0 2 0 2 4 0 2 4 6.

4 5 6 7.

0 1 2 3.

1 2 2 3 4 5.

0 2 0 2 4 5.

(b) What is the worst-case running time of an enqueue() operation on a self-printing queue
with n elements?

#

Θ(1) Θ(logn) Θ(
√

n) Θ(n) Θ(n logn) Θ(n2
)

(c) What is the amortized, per-operation running time of n enqueue() and dequeue() op-
erations on an initially empty self-printing queue? Recall that this quantity is defined as
the worst-case running time for any intermixed sequence of n enqueue() and dequeue()

operations starting from an empty self-printing queue, divided by n.

#

Θ(1) Θ(logn) Θ(
√

n) Θ(n) Θ(n logn) Θ(n3/2
)

COS 226 MIDTERM, FALL 2024 9

7. Analysis of algorithms and sorting. (8 points)

Let n be a power of 2. Consider an array structured as shown below.

2n 2n . . . 2n 0 1 2 2 4 4 4 4 8 8 8 8 8 8 8 8 . . . n n . . . n

The first half of the array contains 2n repetitions of the value 2n. The second half contains
2n numbers: one number 0, one number 1, two repetitions of the number 2, four repetitions
of the number 4, eight repetitions of the number 8, sixteen repetitions of the number 16, and
so on, until the number n appears n times.

For example, here is the array when n = 4:

8 8 8 8 8 8 8 8 0 1 2 2 4 4 4 4

How many compares does each sorting algorithm (standard algorithm, from the textbook)
make as a function of n in the worst case? Note that the length of the array is 4n and not n.

We write log to denote the base-2 logarithm, and recall that log(ab) = log a + log b.

For each sorting algorithm, fill in the best matching bubble.

(a) Selection sort

#

∼
1
2n

2
∼ n2

∼ 2n2
∼ 4n2

∼ 8n2
∼ 16n2

(b) Insertion sort

#

∼
1
2n

2
∼ n2

∼ 2n2
∼ 4n2

∼ 8n2
∼ 16n2

10 PRINCETON UNIVERSITY

(c) Mergesort

#

∼ n logn ∼ 2n logn ∼ 4n logn ∼
9
2n logn ∼ 8n logn ∼ 16n logn

(d) 3-way Quicksort. Assume that the shuffle places the array in descending order:

2n 2n . . . 2n n n . . . n . . . 8 8 8 8 8 8 8 8 4 4 4 4 2 2 1 0

#

Θ(n) Θ(n logn) Θ(n2
/ logn) Θ(n2

) Θ(n2 logn) Θ(n4
)

COS 226 MIDTERM, FALL 2024 11

8. Algorithm design. (10 points)

A mountain-like array is an array of length 2n whose the first half (the first n elements) is
sorted in ascending order, and the second half (the last n elements) is sorted in descending
order.

Here is an example of a mountain-like array of integers with n = 6.

4 7 8 11 18 20 | 31 7 7 4 2 1

(a) Design an algorithm to sort a mountain-like array of integers.

Full credit: The algorithm must run in O(n) time in the worst case.

Partial credit (at least half): You may assume that the input is an unbalancedmountain-
like array, where the first 2n−100 integers are in ascending order and the last 100 integers
are in descending order. The algorithm must run in O(n) time in the worst case.

Choose one option to attempt:

Full-credit solution (mountain-like array).

Partial credit solution (unbalanced mountain-like array).

In the space provided, give a concise English description of your algorithm for solving
the problem. You may use any of the algorithms that we have considered in this course
(e.g., lectures, precepts, textbook, assignments) as subroutines. If you modify such an
algorithm, be sure to describe the modification. Feel free to use code or pseudocode to
improve clarity.

12 PRINCETON UNIVERSITY

(b) Consider a method with the following signature that takes an array of 2n Comparable

elements as input and rearranges it into a mountain-like array. Note that multiple
mountain-like configurations can be formed from the same array, and the method can
return any one of these possible arrangements.

void makeMountainLike(Comparable[] a)

Is it possible to implement this method in O(n) time?

Yes.

No.

If your answer is yes, give a concise English description of your algorithm. If your
answer is no, provide a brief explanation of the reason why.

COS 226 MIDTERM, FALL 2024 13

9. Data structure design. (8 points)

Design a data structure named Tournament that stores and retrieves player information. The
Tournament class should support three operations:

� insert() adds player details,

� getScore() retrieve a player’s score, and

� getLead() returns the player with the highest score.

The implementation should follow the API provided below.

public class Tournament

public Tournament() creates an empty collection

void insert(String name, int score) adds a player to the collection given their
name and score

int getScore(String name) returns the player’s score given their name

String getLead() returns the name of the player with the
highest score

For simplicity, you may assume that there are no duplicate names or scores in the collection
at any time.

Example. Here is a small example sequence of operations.

Tournament t = new Tournament(); // []

t.insert("Roger", 219); // [("Roger", 219)]

t.insert("John", 38); // [("Roger", 219), ("John", 38)]

t.getScore("John"); // returns 38

t.getLead(); // returns "Roger"

t.insert("Freddie", 467); // [("Roger", 219), ("John", 38), ("Freddie", 467)]

t.getLead(); // returns "Freddie"

t.insert("Brian", 189); // [("Roger", 219), ("John", 38),

// ("Freddie", 467), ("Brian", 189)]

t.getScore("Roger"); // returns 219

t.getLead(); // returns "Freddie"

Note: the pairs in square brackets denote players currently in the collection, but the API does
not require you to store them in any particular order.

14 PRINCETON UNIVERSITY

Performance requirements. Denote by n the current number of players in the collection.

Full credit:

� The constructor must take Θ(1) time.

� The insert(), getScore(), and getLeader() methods must each take O(logn) time
in the worst case.

� The data type must use O(n) extra space.

Partial credit (at least 30%): getLeader() takes O(n) time in the worst case. insert()

and getScore() have the same performance requirements as the full credit option.

(a) Specify the instance variables (along with any supporting nested classes) that you would
use to implement Tournament. You may use code or pseudocode to improve clarity. You
may use any of the data types that we have considered in this course (either algs4.jar
or java.util versions). If you make any modifications to these data types, describe
them.

COS 226 MIDTERM, FALL 2024 15

(b) Give a concise English description of your algorithm for implementing insert(). You
may use code or pseudocode to improve clarity.

(c) Give a concise English description of your algorithm for implementing getScore(). You
may use code or pseudocode to improve clarity.

16 PRINCETON UNIVERSITY

(d) Give a concise English description of your algorithm for implementing getLeader().
You may use code or pseudocode to improve clarity.

The running time of your implementation of getLeader() is Θ()

COS 226 MIDTERM, FALL 2024 17

This page is intentionally blank. You may use this page for scratch work.

