
COS 226 Algorithms and Data Structures Fall 2024

Midterm Solutions

1. Initialization.

Don’t forget to do this.

2. Asymptotics.

(a) ∼ 50n
The body of the i loop executes n+ (n− 1)+ (n− 2)+ ⋅ ⋅ ⋅ + 0 times. By the triangle sum,
this is ∼ 1

2n
2. The k loop executes n

n/100 = 100 times.

(b) O(n3), O(n√n), Ω(logn)
The order of growth of the function is Θ(n√n), or ∼ 3n

√
n in tilde notation. n3 is

larger and n
√
n is the same order of growth of the function. (And ∼ n√n has a smaller

constant.)
logn is a smaller order growth than the function.

3. Five sorting algorithms.

D C E B F

D. Mergesort just before the left half of the array is sorted.

C. Insertion sort after 16 iterations.

E. Quicksort (standard, no shuffle) after first partitioning step.

B. Selection sort after 12 iterations.

F. Heapsort after heap construction phase and placing the 12 largest keys.

4. Data structure invariants.

(a) Impossible

The forest defined by the array has a single tree, shown below. Consider the point in
time when 0 was connected to its parent 5. At that moment, the subtree rooted at 0
contained 7 elements (1,2,3,4,6,8 and 0) and the subtree rooted at 5 contained at most
3 elements (either 5 alone or 5,7, and 9). (In fact, the latter is not possible: 7 and
9 would both become children of 5.) The link-by-size rule would not have merged the
larger tree (rooted at 0) into the smaller tree (rooted at 5).



2 PRINCETON UNIVERSITY

5

0

2 4

3

6

1 8

7

9

(b) Impossible

A binary heap is a complete binary tree: all levels are fully filled except possibly the
last, which is populated from left to right. In this case, however, the node with value 65
has no children, while the node with value 35 does.

(c) Impossible

A binary search tree should maintain symmetric order, meaning that keys in nodes in
the left subtree must be less than the root, and keys in nodes in the right subtree must
be greater. In this case, however, 28 is in the left subtree of the root 25, despite being
greater than 25. Additionally, 20 appears in the right subtree of 25, even though it is
smaller.

5. Balanced search trees.

(a) B

Tree B is the only fully balanced tree, meaning that every path from the root to a null
link is of equal length. Recall, also, that red links glue nodes in red-black trees, which
form a single 3-node in the equivalent 2-3 tree.

(b) color flip 17, rotate left 13, rotate right 20, color flip 17

6. Queues.

(a) 1 2 3 3 4 5 4 5 6 7

(b) Θ(n)
enqueue() may result in the entire queue being printed.

(c) Θ(n)
Consider a sequence of n enqueue() operations. The third insert operation results in
3 elements being printed, the sixth insert operation results in 6 elements being printed,
etc. Prints alone make the total running time Ω(3 + 6 + 9 + 12 + ⋯ + n) = Ω(n2) (factor
3 out and apply the triangle sum), so the amortized time is Ω(n). Each operation also
takes O(n) time (for inserting/removing one and printing at most n elements); therefore,
the amortized running time is Θ(n) (i.e., both Ω(n) and O(n)).



COS 226 MIDTERM, SPRING 2024 3

7. Analysis of algorithms and sorting.

(a) ∼ 8n2

Selection sort always makes ∼ 1
2m

2 compares on an array of length m. Here, m = 4n, so
1
2m

2 = 1
2(4n)2 = 8n2.

(b) ∼ 4n2

We count the number of exchanges, as for insertion sort the number of compares is at
most the number of exchanges plus the size of the array. Each element in the second
half of the array is exchanged with all the elements in the first half of the array. Thus,
we get ∼ (2n ⋅ 2n) ∼ 4n2 exchanges.

(c) ∼ 2n log2 n
The topmost merge() merges two subarrays of length 2n and therefore makes O(n)
compares. The subarrays are both of length 2n and are already sorted, therefore each
level of the recursion tree (below the root) makes ∼ 1

2
(2n log(2n)) ∼ n logn compares.

Therefore, the total number of compares is 2n logn (O(n) is a low order term).

(d) Θ(n)
The top-most 3-way partition uses 2n as a pivot on an array of length 4n, and thus
makes ∼ 4n compares. After partitioning, the array is as follows:

n n . . . n . . . 8 8 8 8 8 8 8 8 4 4 4 4 2 2 1 0 2n 2n . . . 2n.

Only the left half remains for further recursive sorting, as the pivots are already in their
final sorted positions.

The next execution of 3-way partition uses n as a pivot on an array of length 2n, and
thus makes ∼ 2n compares. After partitioning, the (remaining) array is as follows:

n

2

n

2
. . .

n

2
. . . 8 8 8 8 8 8 8 8 4 4 4 4 2 2 1 0 n n . . . n.

Only the left half remains for further recursive sorting, as the pivots are already in their
final sorted positions.

This reasoning extends for all recursive calls, so the number of compares is

∼ (4n + 2n + n + 1

2
n + 1

4
n + ⋅ ⋅ ⋅ + 1) ∼ 8n = Θ(n).

(Notice that the number of keys being Θ(logn) implies the runtime is O(n logn): the
number of calls is Θ(logn) and each partition makes O(n) compares. But this is only
an upper bound.)

8. Algorithm design.

(a) Algorithm:

i. Reverse the second half of the array so its order becomes ascending. (This can be
done in-place or with an auxiliary, array since there are no memory constraints.)

ii. With both halves now sorted in ascending order, apply the merge() method on the
two halves to get a sorted array.



4 PRINCETON UNIVERSITY

An alternative algorithm is obtained by modifying the merge() method to scan the first
half of the array left-to-right (starting at i = 0 and incrementing i) and the second half
right-to-left (starting at j = n − 1 and decrementing j).

(b) No.

Assuming an O(n) time implementation of makeMountainLike(), we could create a
compare-based sorting algorithm that runs in O(n) time, contradicting the Ω(n logn)
sorting lower bound. To do this, first transform the input array into a mountain-like form
with makeMountainLike(), which we assume runs in O(n) time, and thus makes O(n)
compares. Additionally, since the input of makeMountainLike() is a Comparable[]

array, it is itself compare-based (i.e., only uses the compareTo() method to compare
elements). Next, sort this mountain-like array using the algorithm in part (a), which
also makes only O(n) compares. This yields a total of O(n) compares for sorting an
arbitrary array.

9. Data structure design.

We maintain a red-black tree called players where keys are player names, and values are their
scores; to support getLead(), we can maintain a String and an int variable that store the
maximum score with the respective player (and return the string). Alternatively, we can use
another data structure scores, where keys are scores and values are player names. players
can be implemented as a red-black tree and scores can be a red-black tree, or a max-heap.

To implement insert(String name, int score), we add (name, score) to players and
update the score and name if the new player has larger score than the maximum. (If using a
second data structure scores, and (score, name) to it.)

For getScore(String name), we search for the key name in players. For getLead(), we
retrieve the maximum from scores, which takes Θ(1) time if it is a max-heap or O(logn)
time if it is a red-black tree.

Observe that since we did not require an implementation for the delete method, the two
data structures do become out of sync, so there is no need to connect them with pointers.


