
COS 226 Algorithms and Data Structures Spring 2024

Final Solutions

1. Initialization.

Don’t forget to do this.

2. Graph search algorithms.

(a) 0 2 6 8 3 5 1 4 7 9

(b) 0 2 8 3 1 5 9 7 4 6

(c) 5 7 9 1 6 4 3 8 2 0

(d) no

The digraph is not a DAG. For example, 3→1→9 is a directed cycle.

3. Minimum spanning trees.

(a) 10 20 30 40 50 90 120

(b) 90 10 50 20 40 30 120

4. Shortest paths.

(a) 0 4 5 3 1 2

(b) 0 80 100 70 30 40

(c) 0 1 3 4 5

Compare the distTo[] values computed in part (b) to the ones obtained by the execution
of Kruskal in part (a) (the latter are optimal).

5. Maxflows and mincuts.

(a) 36 = 16 + 2 + 25 - 7

(b) 107 = 28 + 10 + 30 + 30

(c) A→ F → G→ B →H →D → I → J

(d) 71 = 28 + 7 + 36

(e) A F G or A B C F G



2 PRINCETON UNIVERSITY

6. Data structures.

(a) T T F F

Insert each option to an empty hash table.

(b) (20, 4), (17, 8)

The constraints of the 2d-tree imply that, for any point (x, y) in T , we must have both
x ≥ 12 and 3 < y ≤ 10.

7. Properties of graph algorithms.

(a) T: Let (v, u) be the lightest edge in the graph. Consider the cut with v on one side and
all other vertices on the other. Since (v, u) is the lightest edge crossing this cut, it must
appear in every MST.

(b) F: Consider a graph with three vertices: s, t, and v, where the edge s→ t has a weight
of 3, and the edges s→v and v→ t each have a weight of 2. Initially, the shortest path
from s to t is s→ t with a length of 3. However, after squaring the edge weights, the
shortest path becomes s→v→t, with a total length of 4 + 4 = 8.

(c) T: The value of a minimum st-cut is equal to the value of a maximum flow. Given a
minimum cut in the graph (represented as a set of vertices S on s’s side of the cut), the
value of the cut can be calculated by iterating over all edges and summing the capacities
of edges (u, v) where u ∈ S and v ∉ S.

(d) F: The two augmenting paths can share overlapping edges. For instance, consider a
zero-flow in a flow network with four vertices s, t, v, and u, and the following edges:
s→v with a capacity of 10, v→u with a capacity of 5, u→t with a capacity of 5, and v→t
with a capacity of 10. This flow has two augmenting paths: s→v→ t with a bottleneck
capacity of 10, and s→ v→u→ t with a bottleneck capacity of 5. Despite these paths,
the maximum flow value is only 10.

(e) T: Let e1 and e2 be the edges crossing the mincut. Removing these edges breaks the
graph into exactly two connected components, with vertex sets V ′ and V ∖ V ′. When
Kruskal’s algorithm is run by Karger’s algorithms, it processes edges in ascending order
of weight. Since e1 and e2 are the heaviest edges, the partial MST will reduce to two
connected components before processing e1 and e2. These components must correspond
to the vertex sets V ′ and V ∖ V ′, as e1 and e2 are the only edges connecting V ′ and
V ∖ V ′ and have not yet been processed.

8. Dynamic programming.

A K D E I

int opt[] = new int[n + 1];

for (int i = 0; i <= n; i++) {

opt[i] = values[i];

for (int j = 1; j < i; j++)

opt[i] = Math.max(opt[i], values[j] + opt[i-j] - 1);

}

return opt[n];



COS 226 FINAL SOLUTIONS, FALL 2023 3

9. Randomness.

T T F F T

(a) T: findOneA uses randomness while findOneB does not.

(b) T: The loop in findOneA runs 0.1n times, leading to a Θ(n) worst-case running time.
The expected running time is constant because each iteration of the loop takes constant
time, and the algorithm halts after each iteration with constant probability (in this case,
with proability 0.1).

(c) F: If the first 0.9n entries of a are zeros, findOneB will check ∼ 0.9n entries.

(d) F: If all the sampled indices are the same, for example, index 0, and a[0] = 0, the
algorithm makes a mistake.

(e) T: The array a contains entries with the value one, and since findOneA may scan the
entire array, it is guaranteed to find and return one of these entries.

10. Multiplicative weights.

F F F T T

(a) F: If the first expert predicts incorrectly on each of the last 10 days and the second
expert predicts incorrectly on the first 5 days, the second expert is eliminated on the
first day, while the first expert is eliminated on day T − 9.

(b) F: If all the experts make incorrect predictions every day, the suggested algorithm will
always predict correctly.

(c) F: The weight of the correct experts remains 1 throughout the algorithm’s execution.
After the first day, the total weight of the incorrect experts becomes n−1

2 . After the
second day, it reduces to n−1

4 , and so on. Thus, it takes Θ(logn) days for the weight of
the correct experts to surpass or equal the total weight of the incorrect experts.

(d) T: Repeat the analysis of the multiplicative weight algorithm. This time, the total weight
of the best experts is n

4 ⋅(
1
2)

M , yielding the inequality n
4 ⋅(

1
2)

M
≤ (

3
4)

m
⋅n. Observe that n

cancels.

(e) T: The weight of the first point is 25 times that of the second point, indicating its
weight was doubled 5 more times than the second’s. With only 5 iterations, the first
point’s weight was doubled in every iteration. Since a point’s weight doubles only when
a decision stump mislabels it, this means the first point was mislabeled by all decision
stumps.

11. Intractability.

T F T T T T

(a) T: Since X is NP-complete, it is in NP. Since Y is NP-complete, every problem Z
in NP poly-time reduces to Y . In particular, X poly-time reduces to Y . A similar
argument shows that Y poly-time reduces to X.

(b) F: If X poly-time reduces to Y , a polynomial-time algorithm for Y can be used to
construct a polynomial-time algorithm for X, but the reverse is not necessarily true.



4 PRINCETON UNIVERSITY

(c) T: Since Y poly-time reduces to Z, a T (n)-time algorithm for Z can be used to construct
a T (p(n))-time algorithm for Y , where p(n) is some polynomial. Similarly, since X
poly-time reduces to Y , a T (p(n))-time algorithm for Y can be used to construct a
T (p(q(n)))-time algorithm for X, where q(n) is another polynomial. Therefore, a T (n)-
time algorithm for Z implies a T (f(n))-time algorithm for X, where f(n) = p(q(n)) is
a polynomial.

(d) T: If P ≠ NP, then there exists a problem X in NP that cannot be solved in polynomial
time. Since SAT is NP-complete, X poly-time reduces to SAT. Given that X does not
have a polynomial-time algorithm and poly-time reduces to SAT, it follows that SAT
also cannot be solved in polynomial time.

(e) T: Every YES instance of the problem has a witness, and the verification algorithm
correctly validates the witness in polynomial time.

12. Design: shortest paths through a landmark.

(a) Constructor: Run Dijkstra’s algorithm twice: once using s as the source vertex, and
once using x as the source vertex. Store an integer variable sToX containing the distance
from s to x (which is contained in distTo[x] of the Dijkstra’s run that used s as the
source) and also the distTo array of the Dijsktra’s run that used x as a source, both as
instance variables.

pathLen: Report the sum of the distance from s to x and the distance from x to v, i.e.
sToX + distTo[v].

(b) Constructor: First, run Dijsktra’s in G using x as the source vertex and store the
distTo array as an instance variable.

Compute the reverse graph of G (obtained by reversing each edge in G and keeping the
same vertices), call it G′. Run Dijkstra’s in G′ using x as the source and store the distTo
array as an instance variable called distToReverse. The value of distToReverse[u]
corresponds to the shortest path from u to x for any u.

pathLen: Report the sum distTo[v] + distToReverse[s].

13. Design: shortest path with a reverse edge.

(a) No, the simplest example is a graph with two vertices s and t and one directed edge
from s to t.

(b) Construct a new graph G′. Create two copies of G and add them to G′, call the first
copy G0 and the second copy G1. For every edge (u, v) ∈ G, add an edge from v0 to u1
in G′, i.e. an edge from the copy of vertex v in G0 to the copy of vertex u in G1. To
find the shortest almost-path, run a BFS from s0 and report the distance to t1 (so from
the copy of vertex s in G0 to the copy of vertex t in G1).

The key idea of this solution is that vertices in G0 correspond to paths only taking edges
in the normal direction, and vertices in G1 correspond paths that have taken exactly
one edge in the opposite direction (and that’s why why add an egde from v0 to u1 for
each edge (u, v), note how the vertices are switched).



COS 226 FINAL SOLUTIONS, FALL 2023 5

(c) Alter the full solution to add a “super sink”, i.e. a new vertex t′ and edges from t0 and
t1 to t′. Run BFS to find shortest path from s0 to t′ and report the result minus 1.

Alternate solution: Run a BFS on the graph G from s to t, and report the minimum
between this and the result found by the solution in part b.


