-

COS 217: Introduction to Programming Systems

From Assembler to Linker

% PRINCETON UNIVERSITY

-

The Build Process

Covered here <<

mypgm.c

Preprocess

y

mypgm.i

Compile

y

mypgm.s

Assemble

y

mypgm.o

libc.a

Link /

mypgm

-

An Example Program

A simple (nonsensical) program,
in C and assembly:

Let’s consider the
machine language
equivalent...

-
Examining Machine Lang: RODATA

Assemble program; run objdump

X

S gcc217 -c detecta.s
S objdump --full-contents --section .rodata detecta.o

detecta.o: file format elf64-littleaarch64

Contents of section .rodata:
(0000 54797065 20612063 6861723a 20004869 Type a char:|.Hi

1)01(<00 /
Offsets Contents Assembler does not know addresses

* Assembler knows only offsets
e "Type a char: " starts at offset OxO
e "Hi\n" starts at offset Oxe

-

Examining Machine Lang: TEXT

Run objdump to see instructions

Assembly
language

-

Examining Machine Lang: TEXT

Run objdump to see instructions

Machine
language

-

Examining Machine Lang: TEXT

Run objdump to see instructions

Offsets

Let’'s examine one line at a time...

-

sub sp, sp, #0x10

msb: bit 31 Isb: bit O

} % Q .
1101 0001 0000 0000 0100 0011 1111 1111

0

-

sub sp, sp, #0x10

msb: bit 31 0: d10043ff sub sp, sp, #0x10

}
1101 0001 0000 0000 01000011 1171111112

e opcode: subtract immediate

* Instruction width in bit 31: 1 = 64-bit

* Whether to set condition flags in bit 29: no

e Immediate value in bits 10-21: 10000, = 0x10 = 16
* First source register in bits 5-9: 31 =sp

e Destination register in bits 0-4: 31 =sp

e Additional information about instruction: none

Isb: bit O

!

-

str x30, [sp]

10

-

str x30, [sp]

11

msb: bit 31

}

4:f90003fe str x30, [sp]

1111 1001 0000 0000 0000 0011 11111110

e opcode: store, register + offset

* Instruction width in bits 30-31: 11 = 64-bit

e Offset value in bits 12-20: O

* “Source” (really destination) register in bits 5-9: 31 =sp
* “Destination” (really source) register in bits 0-4: 30

e Additional information about instruction: none

Isb: bit O

!

-

adr x0, 0 <main>

12|

-

adr x0, 0 <main>

13

msb: bit 31

)
0001 0000 0000 0000 0000 0000 0000 0000

8: 10000000 adr x0, 0 <main>

* opcode: generate address

e 19 High-order bits of relative address in bits 5-23: O
e 2 Low-order bits of relative address in bits 29-30: O
e Relative data location is O bytes after this instruction
* Destination register in bits 0-4:0

e Huh? That’'s not where msgl lives!
* Assembler knew that msgl is a label within the RODATA section
e But assembler didn’t know address of RODATA section!

* S0, assembler couldn’t generate this instruction completely,
left a placeholder, and will request help from the linker

Isb: bit O

!

-

Examining Machine Lang: TEXT

14

Run objdump to see instructions

Relocation
records

R_AARCH64 ADR_PREL LO21 .rodata

-
Relocation Record 1

8: R_AARCH64 ADR PREL LO21 .rodata
N J

This part is always the same,
it’s the name of the machine architecture!

Dear Linker,

Please patch the TEXT section at offset Ox8.
Patch in a 21-bit* signed offset of an address, relative
to the PC, as appropriate for the adr instruction format.
When you determine the address of .rodata, use that
to compute the offset you need to do the patch.

Sincerely,
Assembler

* 19 High-order bits of relative address in bits 5-23
2 Low-order bits of relative address in bits 29-30 Y,

16

o]

0 <printf>

17

bl

0 <printf>

18

msb: bit 31

!
1001 0100 0000 0000 0000 0000 0000 0000

c: 94000000 bl O<printf>

e opcode: branch and link
e Relative address in bits 02} 0
e Huh? That’s not where printf lives!
e Assembler had to calculate [addr of printf] - [addr of this instr]

e But assembler didn’t know address of printf -
it’s off in some library (libc) and isn’t present (yet)!

* S0, assembler couldn’t generate this instruction completely,
left a placeholder, and will request help from the linker

Isb: bit O

!

R_AARCH64 CALL26 printf

-

Relocation Record 2

c: R_AARCH64 CALL26 printf

Dear Linker,

Please patch the TEXT section at offset Oxc. Patch
in a 26-bit signed offset relative to the PC, appropriate
for the function call (bl) instruction format. When you
determine the address of printf, use that to compute
the offset you need to do the patch.

Sincerely,
Assembler

20|

o]

0 <getchar>

ol 0 <getchar>
msb: bit 31 Py E— Isb: bit O
iOOl 0100 0000 0000 0000 0000 0000 0000 l
e opcode: branch and link
* Relative address in bits 0-25: 0
e Same situation as before - relocation record coming up!
22

-

Relocation Record 3

10: R_AARCH64_CALL26 getchar

Dear Linker,

Please patch the TEXT section at offset 0x10.
Patch in a 26-bit signed offset relative to the PC,
appropriate for the function call (bl) instruction format.
When you determine the address of getchar, use that
to compute the offset you need to do the patch.

Sincerely,
Assembler

23|

-

cmp w0, #0x41

24

-

cmp w0, #0x41

25

msb: bit 31

}
0111 0001 0000 0001 0000 0100 0001 1111

14:7101041f cmp wO, #0x41

* Recall that cmp is really an assembler alias:
this is the same instruction as subs wzr, w0, 0x41

e opcode: subtract immediate

e [nstruction width in bit 31: O = 32-bit

* Whether to set condition flags in bit 29: yes

* Immediate value in bits 10-21: 1000001, = 0x41 = ‘A’
* First source register in bits 5-9: 0

e Destination register in bits 0-4: 31 = wzr

* Note that register #31 (11111,) is used to mean either sp or xzr/wzt,
depending on the instruction

Isb: bit O

!

0.ne 24 <skip>

0.ne 24 <skip>

27

msb: bit 31

)
0101 0100 0000 0000 0000 0000 01100001

18: 54000061 b.ne 24 <skip>

e This instruction is at offset Ox18, and skip is at offset Ox24,
which is 0x24 - Ox18 = Oxc = 12 bytes later

e opcode: conditional branch \'
* Relative address in bits 5-23: 11,. Shift left by 2: 1100, = 12
e Conditional branch type in bits 0-4: NE

* No need for relocation record!
* Assembler had to calculate [addr of skip] — [addr of this instr]
* Assembler did know offsets of skip and this instruction

e S0, assembler could generate this instruction completely,
and does not need to request help from the linker

Isb: bit O

!

-

R_AARCH64 ADR PREL LO21 .rodata+Oxe

28

-

Relocation Record 4

1c: R_AARCH64 ADR_PREL LO21 .rodata+Oxe

Dear Linker,

Please patch the TEXT section at offset Ox1.c.
Patch in a 21-bit signed offset of an address, relative
to the PC, as appropriate for the adr instruction format.
When you determine the address of .rodata, add Oxe
and use that to compute the offset you need to do the

patch.

Sincerely,
Assembler

29|

-

Another printf, with relocation record...

-

Last Example: Your Turn!

What does this relocation record mean?

20: 94000000 bl 0 <printf>
20: R_AARCH64 CALL26 printf

Dear Linker,

Please patch the TEXT section at offset 0x20.
Patch in a 26-bit signed offset relative to the PC,
appropriate for the function call (bl) instruction format.

See context on
previous slides with

parallel records: When you determine the address of printf, use that to
bl printf (#48) compute the offset you need to do the patch.
bl getchar (#51)
39 Sincerely,
Assembler

-
Everything Else is Similar...

33

Exercise for you:
using information
from these slides,
create a bitwise
breakdown of

these instructions,
and convince yourself
that the hex values
are correct!

-

From Assembler to Linker

34

Assembler writes its data structures to .o file

Linker:
e Reads .o file
* Writes executable binary file
* Works in two phases: resolution and relocation

35

Linker Resolution

S gcc217 prontf.c

prontf.c: In function 'main":

prontf.c:6:1: implicit declaration of function 'prontf' [-Wimplicit-function-declaration]
{ prontf("hello, world\n");

A

/tmp/ccjA2CnG.o: In function "'main':
prontf.c:(.text+0x10): undefined reference to "prontf'
collect2: error: |d returned 1 exit status

Resolution

e Linker resolves references

For our sample program, linker:
* Notes that labels getchar and printf are unresolved
 (with -static) Fetches machine language code for C standard library from libc.a
* Adds that code to TEXT section
* Adds more code (e.g. definition of _start) to TEXT section too
* Adds code to other sections too

-

Linker Relocation

36|

e | inker relocates code into final
combined sections with addresses
| inker traverses relocation records,
patching instructions as specified

b

@ipatrickt

https://unsplash.com/@impatrickt

-

Examining Machine Language: RODATA

Link program; run objdump on final exectuable

X

S gcc217 detecta.o -o detecta
S objdump --full-contents --section .rodata detecta

detecta: file format elf64-littleaarch64

Contents of section .rodata:
100710 01p00200 00000000 00000000 00000000cuu.......
100720 5497065 20612063 6861723a 20004869 Type a char: .Hi

100730 0apo
\ RODATA is at 0x400710
Addresses, Starts with some header info
not offsets Real start of RODATA is at 0x400720

"Type a char: " starts at 0x400720
"Hi\n" starts at 0x40072e

37

-

Examining Machine Language: TEXT

38

Addresses,
not offsets

Run objdump to see instructions

-

Examining Machine Language: TEXT

W
©

Additional code

-

Examining Machine Language: TEXT

40|

No static relocation records!

Let's see what the linker
did with them...

-

adr x0, 400720 <msg1>

-

adr x0, 400720 <msgl1>

msb: bit 31 400658: 10000640 adr x0, 400720 <msgl> Isb: bit O

! !
0001 0000 0000 0000 0000 0110 0100 0000

e opcode: generate address

e 19 High-order bits of offset in bits 5-23: 110010

e 2 Low-order bits of offset in bits 29-30: 00

* Relative data location is 11001000b = Oxc8 bytes after this instruction
* Destination register in bits 0-4:0

* msgl is at 0x400720
e this instruction is at 0x400658

e 0x400720 - 0x400658 = Oxc8 v

42

o]

4004e0 <printf@plt>

o]

40040 <printf@plt>

44

msb: bit 31

!
1001011117111 1111 17111 111110100001

40065c: 97ffffal bl 4004e0 <printf@plt>

e opcode: branch and link

* Relative address in bits 0-25: 26-bit two’s complement of 1011111, .
But remember to shift left by two bits (see earlier slides)!
This gives -1 01111100, = -Ox17c

e printf@plt is at 0x4004e0
e this instruction is at 0x40065c

« 0x4004€0 - 0x40065¢ = -0x17¢ v

Isb: bit O

!

-

Everything Else is Similar...

-

What's in libc, anyway?

-

Dynamic linking

47

$ objdump —dynamic-reloc detecta

detecta: file format elf64-littleaarch64

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
000000000041ffd0R_AARCH64_GLOB_DAT _ITM_deregisterTMCloneTable
000000000041ffd8 R_AARCH64_GLOB_DAT __gmon_start__
000000000041ffe0 R_AARCH64_GLOB_DAT _ITM_registerTMCloneTable
0000000000420000 R_AARCH64_JUMP_SLOT __libc_start_main@GLIBC_2.34
0000000000420008 R_AARCH64 JUMP_SLOT __gmon_start__
0000000000420010 R_AARCH64_JUMP_SLOT abort@GLIBC_2.17
0000000000420018 R_AARCH64_JUMP_SLOT puts@GLIBC_2.17
0000000000420020 R_AARCH64_JUMP_SLOT getchar@GLIBC_2.17
0000000000420028 R_AARCH64_JUMP_SLOT printf@GLIBC_2.17

* Dynamically-linked executable does not contain definitions for
function in shared libraries (libc.so)
* Linked again at runtime
* Page tables for multiple processes point to the same
physical pages containing libc
* Alternative: static linking (-static) resolves all references
* Entirety of libc.a is brought into detecta

-

Summary

48|

AARCH64 Machine Language
e 32-bit instructions
* Formats have conventional locations for opcodes, registers, etc.

Assembler
* Reads assembly language file
e Generates TEXT, RODATA, DATA, BSS sections
e Containing machine language code
* Generates relocation records
e Writes object (.0) file

Linker
e Reads object (.0) file(s)
e Does resolution: resolves references to make code complete
e Does relocation: traverses relocation records to patch code
* Writes executable binary file

-

Wrapping Up the Course

49|

No precepts today/tomorrow -- this is the last class meeting.

Assignment 6 is due on Tuesday 12/10
* “Regular” assignment - not subject to Dean’s Date restrictions

Plenty of office hours over the next 2 weeks
e Exact schedule has been announced and pinned on Ed

Review session: Saturday 12/14 at 3:00 PM, location TBA
Final Exam: Tuesday 12/17 at 12:30 PM in McCosh 50

https://www.cs.princeton.edu/courses/cos217/exam?2.php

https://www.cs.princeton.edu/courses/cos217/exam2.php

-

We Have Covered:

50

Programming in the large
* Program design
* Programming style
e Building
e Testing
e Debugging
» Data structures
* Modularity
e Performance
* Version control

Programming at several levels
* ARM Machine Language
* ARM Assembly Language
* The C programming language
* (just a taste of) the bash shell

Core systems and organization ideas
e Preprocess, Compile, Assemble, Link
e Storage hierarchy
* (just a taste of) Processes and VM

The end.

return EXIT_SUCCESS;

	Slide 1: From Assembler to Linker
	Slide 2: The Build Process
	Slide 3: An Example Program
	Slide 4: Examining Machine Lang: RODATA
	Slide 5: Examining Machine Lang: TEXT
	Slide 6: Examining Machine Lang: TEXT
	Slide 7: Examining Machine Lang: TEXT
	Slide 8: sub sp, sp, #0x10
	Slide 9: sub sp, sp, #0x10
	Slide 10: str x30, [sp]
	Slide 11: str x30, [sp]
	Slide 12: adr x0, 0 <main>
	Slide 13: adr x0, 0 <main>
	Slide 14: Examining Machine Lang: TEXT
	Slide 15: R_AARCH64_ADR_PREL_LO21 .rodata
	Slide 16: Relocation Record 1
	Slide 17: bl 0 <printf>
	Slide 18: bl 0 <printf>
	Slide 19: R_AARCH64_CALL26 printf
	Slide 20: Relocation Record 2
	Slide 21: bl 0 <getchar>
	Slide 22: bl 0 <getchar>
	Slide 23: Relocation Record 3
	Slide 24: cmp w0, #0x41
	Slide 25: cmp w0, #0x41
	Slide 26: b.ne 24 <skip>
	Slide 27: b.ne 24 <skip>
	Slide 28: R_AARCH64_ADR_PREL_LO21 .rodata+0xe
	Slide 29: Relocation Record 4
	Slide 30: Another printf, with relocation record…
	Slide 32: Last Example: Your Turn!
	Slide 33: Everything Else is Similar…
	Slide 34: From Assembler to Linker
	Slide 35: Linker Resolution
	Slide 36: Linker Relocation
	Slide 37: Examining Machine Language: RODATA
	Slide 38: Examining Machine Language: TEXT
	Slide 39: Examining Machine Language: TEXT
	Slide 40: Examining Machine Language: TEXT
	Slide 41: adr x0, 400720 <msg1>
	Slide 42: adr x0, 400720 <msg1>
	Slide 43: bl 4004e0 <printf@plt>
	Slide 44: bl 4004e0 <printf@plt>
	Slide 45: Everything Else is Similar…
	Slide 46: What’s in libc, anyway?
	Slide 47: Dynamic linking
	Slide 48: Summary
	Slide 49: Wrapping Up the Course
	Slide 50: We Have Covered:
	Slide 51: The end.

