
COS 217: Introduction to Programming Systems

Buffer Overrun Vulnerabilities and

Assignment 6 (The ‘B’ Attack)

@fridooh
xkcd.com/2385

https://unsplash.com/@fridooh
http://xkcd.com/2385

Yet another character reading loop program …

$./a.out

What is your name?

John Smith

Thank you, John Smith.

The answer to life, the universe, and everything is 42

#include <stdio.h>
int main(void)
{
 char name[12], c;
 int i = 0, magic = 42;
 printf("What is your name?\n");
 while ((c = getchar()) != '\n')
 name[i++] = c;
 name[i] = '\0';
 printf("Thank you, %s.\n", name);
 printf("The answer to life, the universe, "
 "and everything is %d\n", magic);
 return 0;
}

@grakozy

2

(Relating the image on the

previous slide to this

program:

Did you know that if

a=1,

b=2,

…

z=26,

then x+k+c+d=42?)

https://unsplash.com/@grakozy

A Reason Why People With Long Names Can’t Have Nice Things

$./a.out
What is your name?

?
??? (!)
(Note: this is just the number that’s actually printed when you run the code.

 It’s not an attempt to Easter egg a phone number or anything like that.

 Please don’t try to call it. Doing so almost certainly won't give you the

 answer to life, the universe, and everything.)

#include <stdio.h>
int main(void)
{
 char name[12], c;
 int i = 0, magic = 42;
 printf("What is your name?\n");
 while ((c = getchar()) != '\n')
 name[i++] = c;
 name[i] = '\0';
 printf("Thank you, %s.\n", name);
 printf("The answer to life, the universe, "
 "and everything is %d\n", magic);
 return 0;
}

3

Christopher Moretti
Thank you, Christopher Mor
tti.
The answer to life, the universe, and everything is 6911092

Explanation: Stack Frame Layout

#include <stdio.h>
int main(void)
{
 char name[12], c;
 int i = 0, magic = 42;
 printf("What is your name?\n");
 while ((c = getchar()) != '\n')
 name[i++] = c;
 name[i] = '\0';
 printf("Thank you, %s.\n", name);
 printf("The answer to life, the universe, "
 "and everything is %d\n", magic);
 return 0;
}

Old SP

0

magic

c

Return addr

name
.

.

.

i

SP

When there are too many characters,

program carelessly writes beyond

space “belonging” to name.

• Overwrites other variables

• This is a buffer overrun, or stack smash

• The program has a security bug!

5

Example Trace

#include <stdio.h>
int main(void)
{
 char name[12], c;
 int i = 0, magic = 42;
 printf("What is your name?\n");
 while ((c = getchar()) != '\n')
 name[i++] = c;
 name[i] = '\0';
 printf("Thank you, %s.\n", name);
 printf("The answer to life, the universe, "
 "and everything is %d\n", magic);
 return 0;
}

Old SP

0

magic

c

Return addr

name
.

.

.

i

SP

Christophers (not \0 terminated) in name[0]-name[11]

Each letter from getchar updates c , until c becomes ‘\n’.

(It is also overwritten once by name[i++] = c,

 when i is 15 and c is ‘e’ because &c==&(name[15]))

First 't' overwrites 42 with 0x74 (‘t’) (3 high-order bytes still 0)

Second 't' makes magic 29812 (2 high-order bytes still 0)

Final 'i' makes magic 6911092 (1 high-order byte still 0)

Mor in 3 padding bytes before c, effectively: name[12]-name[14]

6 little endian!

(L17 appendix 2)

It Gets Worse…

#include <stdio.h>
int callee(void)
{
 char name[12], c;
 int i = 0, magic = 42;
 printf("What is your name?\n");
 while ((c = getchar()) != '\n')
 name[i++] = c;
 name[i] = '\0';
 printf("Thank you, %s.\n", name);
 printf("The answer to life, the universe, "
 "and everything is %d\n", magic);
 return 0;
}

Old SP

0

magic

c

Return addr

name
.

.

.

i

SP

Buffer overrun can overwrite onto its

caller function's stack frame!

caller's
stack-saved

contents

7

It Gets Even Worse…

#include <stdio.h>
int callee(void)
{
 char name[12], c;
 int i = 0, magic = 42;
 printf("What is your name?\n");
 while ((c = getchar()) != '\n')
 name[i++] = c;
 name[i] = '\0';
 printf("Thank you, %s.\n", name);
 printf("The answer to life, the universe, "
 "and everything is %d\n", magic);
 return 0;
}

Old SP

0

magic

c

Return addr

name
.

.

.

i

SP

And somewhere on caller's stack frame is

the saved return address for that function …

Buffer overrun can overwrite caller's return address!

• Replacement value can be an invalid address,

leading to a segfault.

old x30

8

overwritten

with, e.g.,
NULL

And somewhere on caller's stack frame is

the saved return address for that function …

Buffer overrun can overwrite caller's return address!

• Replacement value can be an invalid address,

leading to a segfault, or it can cleverly cause unintended

control flow!

It Gets Much Worse…

#include <stdio.h>
int callee(void)
{
 char name[12], c;
 int i = 0, magic = 42;
 printf("What is your name?\n");
 while ((c = getchar()) != '\n')
 name[i++] = c;
 name[i] = '\0';
 printf("Thank you, %s.\n", name);
 printf("The answer to life, the universe, "
 "and everything is %d\n", magic);
 return 0;
}

Old SP

0

magic

c

Return addr

name
.

.

.

i

SP

here

.text

9

old x30

And somewhere on caller's stack frame is

the saved return address for that function …

Buffer overrun can overwrite caller's return address!

• Replacement value can be an invalid address,

leading to a segfault, or it can cleverly cause unintended

control flow, or even cause arbitrary malicious code to run!

It Gets Much, Much Worse…

#include <stdio.h>
int callee(void)
{
 char name[12], c;
 int i = 0, magic = 42;
 printf("What is your name?\n");
 while ((c = getchar()) != '\n')
 name[i++] = c;
 name[i] = '\0';
 printf("Thank you, %s.\n", name);
 printf("The answer to life, the universe, "
 "and everything is %d\n", magic);
 return 0;
}

Old SP

0

magic

c

Return addr

name
.

.

.

i

SP

or here...

.bss

here

.text

10

old x30

Attacking a Web Server

Web Server
Client PC

for(i=0;p[i];i++)

 search[i]=p[i];

URLs

 Input in web forms

 Crypto keys for SSL

 etc.

this is a really long search term that overflows a buffer

Attacking Everything in Sight

The Internet

@ badguy.com
Client PC

for(i=0;p[i];i++)

 important[i]=p[i];

 E-mail clients

 PDF viewers

 Operating-system kernels

 TCP/IP Stack

Any application that ever sees input directly from the outside!

webp image library (9/2023)

C/C++ MP4 video library (4/2023)

OpenSSL crypto library (11/2022)

Smart UPS devices (3/2022)

Zoom (11/2021)

VLC media player (1/2019)

Nintendo Switch (4/2018)

…

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-29584
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-29584
https://thehackernews.com/2022/11/just-in-openssl-releases-patch-for-2.html
https://www.armis.com/research/tlstorm/
https://explore.zoom.us/en/trust/security/security-bulletin/
https://hackerone.com/reports/484398
https://fail0verflow.com/blog/2018/shofel2/

Defenses Against This Attack

Best: program in languages that make

array-out-of-bounds impossible (Java, python, C#, ML, ...)

But if you need to use C…

Defenses Against This Attack

In C: use discipline and software analysis tools to check bounds of array subscripts

Augmented by OS- or compiler-level mitigations:

• Address space layout randomization

• “No-execute” memory permission for sections other than .text

• “Canaries” at end of stack frames
14

None of these

would have

prevented the

“Heartbleed”

attack

Half a billion dollars worth of heartburn …

15
https://en.wikipedia.org/wiki/Heartbleed#/media/File:Simplified_Heartbleed_explanation.svg

Wikipedian FenixFeather - Creative Commons Attribution-Share Alike 3.0 Unported

https://en.wikipedia.org/wiki/Heartbleed
https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Assignment 6: Attack the “Grader” Program

$./grader

What is your name?

Joe Student

D is your grade.

Thank you, Joe Student.

$./grader

What is your name?

Andrew Appel

B is your grade.

Thank you, Andrew Appel.

enum {BUFSIZE = 48};
char grade = 'D';
char name[BUFSIZE];
...
int main(void)
{
 mprotect(...);
 getname();
 if (strcmp(name, "Andrew Appel") == 0)
 grade = 'B';
 printf("%c is your grade.\n", grade);
 printf("Thank you, %s.\n", name);
 return 0;
}

16

Assignment 6: Attack the “Grader” Program

/* Read a string into name */
void readString() {
 char buf[BUFSIZE];
 int i = 0;
 int c;

 /* Read string into buf[] */
 for (;;) {
 c = fgetc(stdin);
 if (c == EOF || c == '\n')
 break;
 buf[i] = c;
 i++;
 }
 buf[i] = '\0';

 /* Copy buf[] to name[] */
 for (i = 0; i < BUFSIZE; i++)
 name[i] = buf[i];
}

/* Prompt for name and read it */
void getName() {
 printf("What is your name?\n");
 readString();
}

Unchecked

write to

buffer!
17

Assignment 6: Attack the “Grader” Program

$./grader

What is your name?

Joe Student\0(#@&$%*#&(*^!@%*!(&$

B is your grade.

Thank you, Joe Student.

enum {BUFSIZE = 48};
char grade = 'D';
char name[BUFSIZE];
...
int main(void)
{
 mprotect(...);
 getname();
 if (strcmp(name, "Andrew Appel") == 0)
 grade = 'B';
 printf("%c is your grade.\n", grade);
 printf("Thank you, %s.\n", name);
 return 0;
}

18

Smash the

stack!

Memory Map of STACK Section

SP
readString’s
stackframe

???
buf
buf
…
buf
???

getName’s
stackframe ???

…
???

main’s
stackframe ???

…
???

Keep writing past end of buf

Get to getName’s stackframe

getName’s saved x30!
(somewhere on stack)

Overwrite it!

What’s

there?

With

what?

19

Assignment 6: Attack the “Grader” Program

$./grader

What is your name?

Joe Student\0(#@&$%*#&(*^!@%*!(&$

B is your grade.

Thank you, Joe Student.

enum {BUFSIZE = 48};
char grade = 'D';
char name[BUFSIZE];
...
int main(void)
{
 mprotect(...);
 getname();
 if (strcmp(name, "Andrew Appel") == 0)
 grade = 'B';
 printf("%c is your grade.\n", grade);
 printf("Thank you, %s.\n", name);
 return 0;
}

20

enum {BUFSIZE = 48};
char grade = 'D';
char name[BUFSIZE];
...
int main(void)
{
 mprotect(...);
 getname();
 if (strcmp(name, "Andrew Appel") == 0)
 grade = 'B';
 printf("%c is your grade.\n", grade);
 printf("Thank you, %s.\n", name);
 return 0;
}

Memory Map of TEXT Section

readString
rS prolog
rS instrs…
rS instrs…
…
rS epilog
rS return

getName
gN prolog
rS instrs…
rS instrs…
…
rS epilog
rS return

main
m prolog
m instrs…
m instrs…
…
m epilog
m return

...
checkappel:
 if (strcmp(name, "Andrew Appel") != 0)
 goto afterb
 grade = ‘B’
afterb:
 print ...
...

...
checkappel:
 if (strcmp(name, "Andrew Appel") != 0)
 goto afterb
 grade = 'B'  HERE!
afterb:
 print ...
...

21

(All of these instructions are actually

machine code, not flattened C, of course!)

Construct Your Exploit String (createdataB.c)

1. Your name.

• After all, the grader program’s last

line of output must be:
“Thank you, [your name].”

2. A null byte.

• Otherwise, the grader program’s last

line of output will be corrupted.

3. Filler to overrun until x30.

• Presumably more null bytes are

easiest, but easter eggs are fine.

4. The address of the target

• The statement grade = ’B’.
22

fopen the file "dataB" and

write your name into that file

(e.g. with fprintf)

Address is a 64-bit (little-endian)

unsigned integer: C unsigned long

See “Writing Binary Data”

precept handout. '\0' is just

a single byte of binary data.

Let’s Not Get Thrown in Jail, Please

23

https://www.law.cornell.edu/

https://www.law.cornell.edu/

Summary

• This lecture:

• Buffer overrun attacks in general

• Assignment 6 “B Attack” principles of operation

• Next precept:

• Assignment 6 “B Attack” recap

• Memory map using gdb

• Writing binary data

• Final 3 lectures:

• Processes

• Assignment 6 “A Attack” overview

• Machine language details needed for “A Attack”

• Finally finishing the 4-stage build process: the Linker!

• Final precept:

• MiniAssembler and ”A Attack” details

24

What: Final Exam!

When: 4 weeks from Yesterday

 Tuesday, December 17

 12:30pm – 3:30 noon

Where: McCosh 50

How: On paper. Closed book, but 1 two-sided study sheet allowed.

Why: Cumulative assessment. You've learned a lot, so show us!

Info: https://www.cs.princeton.edu/courses/archive/fall24/cos217/exam2.php

Final Exam Info

25

https://www.cs.princeton.edu/courses/archive/fall24/cos217/exam2.php

	Slide 1: Buffer Overrun Vulnerabilities and Assignment 6 (The ‘B’ Attack)
	Slide 2: Yet another character reading loop program …
	Slide 3: A Reason Why People With Long Names Can’t Have Nice Things
	Slide 5: Explanation: Stack Frame Layout
	Slide 6: Example Trace
	Slide 7: It Gets Worse…
	Slide 8: It Gets Even Worse…
	Slide 9: It Gets Much Worse…
	Slide 10: It Gets Much, Much Worse…
	Slide 11: Attacking a Web Server
	Slide 12: Attacking Everything in Sight
	Slide 13: Defenses Against This Attack
	Slide 14: Defenses Against This Attack
	Slide 15: Half a billion dollars worth of heartburn …
	Slide 16: Assignment 6: Attack the “Grader” Program
	Slide 17: Assignment 6: Attack the “Grader” Program
	Slide 18: Assignment 6: Attack the “Grader” Program
	Slide 19: Memory Map of STACK Section
	Slide 20: Assignment 6: Attack the “Grader” Program
	Slide 21: Memory Map of TEXT Section
	Slide 22: Construct Your Exploit String (createdataB.c)
	Slide 23: Let’s Not Get Thrown in Jail, Please
	Slide 24: Summary
	Slide 25: Final Exam Info

