
COS 217: Introduction to Programming Systems

Virtual Memory, Storage Hierarchy, and Caching

Agenda

2

Virtual Memory

Virtual vs. physical memory

Page tables

Page faults

Storage and Locality

The storage hierarchy

Spatial and temporal locality

Caching

Effective Caching

Block size

Eviction policy

Order of operations

Processes

Program
•Executable code

•A static entity

Process
•An instance of a program in execution

•A dynamic entity: has a time dimension

•Each process runs one program

• E.g. the process with Process ID 12345 might be running emacs

•One program can run in multiple processes

• E.g. PID 12345 might be running emacs, and PID 23456 might also be running emacs –

for the same user or for a different user

3

Processes: Two Key Illusions

1. Processes believe they have private control flow

(i.e., they own the whole CPU, all the time)

2. Processes believe they have a private address space

(i.e., they own all the memory that the machine has or

could have)

Process is a profound abstraction in computer science4

Private Address Space: Illusion

Each process sees main memory as

Huge: 264 = 16 EB (16 exabytes) of memory ≈ 1019 bytes

Uniform: contiguous memory locations from 0 to 264-1

Process X Process Y

Memory

for

Process

X

0000000000000000

FFFFFFFFFFFFFFFF

Memory

for

Process

Y

0000000000000000

FFFFFFFFFFFFFFFF

5

Private Address Space: Reality

6

Process X VM Process Y VM

…FFFFFFFF
unmapped

unmapped

Physical Memory

Disk

…00000000 …00000000

…FFFFFFFF

Memory is divided into pages

• At any time, some pages are in physical memory, some on disk (≈ in a file)

• OS and hardware swap pages between physical memory and disk

• Multiple processes share physical memory

Virtual & Physical Addresses

Question

• How do OS and hardware implement virtual memory?

Answer (part 1)

• Distinguish between virtual addresses and physical addresses

7

Virtual & Physical Addresses (cont.)

Virtual address

• Identifies a location in a particular process’s virtual memory

• Independent of size of physical memory

• Independent of other concurrent processes

• Consists of virtual page number & offset

• Used by application programs

Physical address

• Identifies a location in physical memory

• Consists of physical page number & offset

• Known only to OS and hardware

Note:

• Offset is same in virtual addr and corresponding physical addr

virtual page num offset

physical page num offset

8

ArmLab Virtual & Physical Addresses

On ArmLab:
• Each virtual address consists of 64 bits

• There are 264 bytes of virtual memory (per process)

• Each offset is 16 bits

• Each page consists of 216 bytes

• Each virtual page number consists of 64 – 16 = 48 bits

• There are 248 virtual pages

virtual page num offset

48 bits 16 bits

virtual

addr

physical page num offsetphysical

addr

9

ArmLab Virtual & Physical Addresses

On ArmLab:
• Each physical address consists of 37 bits

• There are 237 (128G) bytes of physical memory (per computer)

• Each offset is 16 bits

• Each page consists of 216 bytes

• Each physical page number consists of 37 – 16 = 21 bits

• There are 221 physical pages

virtual page num offset

48 bits 16 bits

virtual

addr

physical page num offsetphysical

addr

16 bits21 bits

10

Page Tables

Question

• How do OS and hardware implement virtual memory?

Answer (part 2)

• Maintain a page table for each process (stored in physical memory)

11

Page Tables (cont.)

Page table maps each

in-use virtual page to:

• A physical page, or

• A spot on disk

Virtual Page Num Physical Page Num

or Disk Addr

0 Physical page 5

1 (unmapped)

2 Spot X on disk

Page Table for Process 1234

… …

3 Physical page 8

12

Storing Page Tables

Question

• Where are the page tables themselves stored?

Answer

• In main memory

Question

• What happens if a page table is swapped out to disk???!!!

Answer

• It hurts! So don’t do that, then!

• OS is responsible for swapping

• Special logic in OS “pins” page tables to physical memory

• So they never are swapped out to disk
13

Page Faults

Question

• How do OS and hardware implement virtual memory?

Answer (part 3)

• Trigger a page fault for accesses to virtual pages that are swapped out (on disk)

14

Page Faults

• Process executes instruction that references virtual memory
• CPU determines virtual page
• CPU checks if required virtual page is in physical memory: no!

• CPU generates page fault
• OS gains control of CPU
• OS (potentially) evicts some page from physical memory to disk, loads required page

from disk to physical memory
• OS returns control of CPU to process – to same instruction

• Process executes instruction that references virtual memory
• CPU checks if required virtual page is in physical memory: yes
• CPU does load/store from/to physical memory

Virtual memory enables the illusion of private address spaces

15

Let’s start by considering security…

16

VM Effects on Security and Speed

Q: What effect does virtual memory have on the security and speed of processes?

 Security Speed

A.

B.

C.

D.

Consequences of Virtual Memory

Memory protection among processes

• Process’s page table references only physical memory pages that the process currently owns

• Process can’t accidentally/maliciously affect physical memory used by another process

Memory protection within processes

• Permission bits in page-table entries indicate whether page is read-only, etc.

• Allows CPU to prohibit

• Writing to RODATA & TEXT sections

• Access to protected (OS owned) virtual memory

17

18

VM Effects on Security and Speed

Q: What effect does virtual memory have on the security and speed of processes?

 Security Speed

A.

B.

C.

D.

OK, so part of the answer is:

 Security

But what about speed?

Revisiting Page Tables…

Question

• Doesn’t each logical memory access require two physical memory accesses –

one to access the page table, and one to access the desired datum?

Answer

• Conceptually, yes!

(And page tables are stored hierarchically as trees, so it can be even worse than 2 accesses!)

Question

• Isn’t that inefficient?

Answer

• Conceptually: yes, but in actuality not really … let’s see why!

19

Agenda

20

Virtual Memory

Virtual vs. physical memory

Page tables

Page faults

Storage and Locality

The storage hierarchy

Spatial and temporal locality

Caching

Effective Caching

Block size

Eviction policy

Order of operations

Typical Storage Hierarchy

registers

main memory (RAM)

local secondary storage

(local disks, SSDs)

Larger

Slower

Cheaper

storage

devices
remote secondary storage

(distributed file systems, Web servers)

Local disks hold files

retrieved from disks on

remote network servers

Main memory holds disk

blocks retrieved from local

disks

L1 cache

CPU registers hold words retrieved from

L1/L2/L3 cache

L1/L2/L3 cache holds cache lines

retrieved from main memory

Smaller

Faster

$$$$er

storage

devices Level 2 cache

Level 3 cache

21

Typical Storage Hierarchy

Factors to consider:

• Capacity

• Latency (how long to do a read)

• Bandwidth (how many bytes/sec can be read)

• Weakly correlated to latency: reading 1 MB from a hard disk

isn’t much slower than reading 1 byte

• Volatility

• Do data persist in the absence of power?

22

Typical Storage Hierarchy

Registers

• Latency: 0 cycles

• Capacity: 8-256 registers (31 8-byte general purpose registers in AArch64)

L1/L2/L3 Cache

• Latency: 1 to 40 cycles

• Capacity: 32KB to 32MB

Main memory (RAM)

• Latency: ~ 50-100 cycles

• 100 times slower than registers

• Capacity: GB

23

@christianw , @harrisonbroadbent

https://unsplash.com/@christianw
https://unsplash.com/@harrisonbroadbent

Typical Storage Hierarchy

Local secondary storage: disk drives

• Solid-State Disk (SSD):

• Flash memory (nonvolatile)

• Latency: 0.1 ms (~ 300k cycles)

• Capacity: 128 GB – several TB

• Hard Disk:

• Spinning magnetic platters, moving heads

• Latency: 10 ms (~ 30M cycles)

• Capacity: 1 – dozens of TB

24

@benjaminlehman , Samsung Belgium

https://unsplash.com/@benjaminlehman
https://www.flickr.com/people/60952012@N06

Cache / RAM Latency

https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3

L1
L2

L3

DRAM

(L4)

1 clock = 3·10-10 sec
25

https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3

Disks

1 ns

1 μs

1 ms

Kb Mb Gb Tb

DRAM

HDD

SSD

26

Typical Storage Hierarchy

Remote secondary storage (a.k.a. “the cloud”)

• Latency: tens of milliseconds

• Limited by the speed of light (and network bandwidth)

• Capacity: essentially unlimited

27

@TheDigitalArtist

https://pixabay.com/users/thedigitalartist-202249/

Storage Device Speed vs. Size

Facts:

• CPU needs sub-nanosecond access to data to run instructions at full speed

• Fast storage (sub-nanosecond) is small (100-1000 bytes)

• Big storage (gigabytes) is slow (15 nanoseconds)

• Huge storage (terabytes) is glacially slow (milliseconds)

Goal:

• Need many gigabytes of memory,

• but with fast (sub-nanosecond) average access time

Solution: locality allows caching

• Most programs exhibit good locality

• A program that exhibits good locality will benefit from proper caching,

which enables good average performance

28

Locality

Two kinds of locality

• Temporal locality

• If a program references item X now,

then it probably will reference X again soon

• Spatial locality

• If a program references item X now,

then it probably will reference item at address X±1 soon

Most programs exhibit good temporal and spatial locality

29

Locality Example

Locality example

Temporal locality

• Data: Whenever the CPU accesses sum,

it accesses sum again shortly thereafter

• Instructions: Whenever the CPU executes sum += a[i],
it executes sum += a[i] again shortly thereafter

Spatial locality

• Data: Whenever the CPU accesses a[i],
it accesses a[i+1] shortly thereafter

• Instructions: Whenever the CPU executes sum += a[i],
it executes i++ (which are the next machine language instructions) shortly thereafter

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];

Typical code

(good overall locality)

30

Caching

Cache

• Fast access, small capacity storage device

• Acts as a staging area for a subset of the items in a slow access, large capacity storage device

Good locality + proper caching

⇒ Most storage accesses can be satisfied by cache

⇒ Overall storage performance improved

31

Caching in a Storage Hierarchy

32

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Larger, slower device at

level k+1 is partitioned

into blocks

Level k+1:

4

Blocks copied

between levels

9 3

Smaller, faster device at

level k caches a subset of

the blocks from level k+1

Level k:

4 10

10

Cache Hits and Misses

Cache hit

• E.g., request for block 10

• Access block 10 at level k

• Fast!

Cache miss

• E.g., request for block 8

• Evict some block from level k

• Load block 8 from level k+1

to level k

• Access block 8 at level k

• Slow!

Caching goal:

• Maximize cache hits

• Minimize cache misses

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Level k:

Level k+1:

4

4 10

10

Level k is a cache

for level k+1

33

34

VM Effects on Security and Speed

Q: What effect does virtual memory have on the security and speed of processes?

 Security Speed

A.

B.

C.

D.

So, with caching, we finally

arrive at the answer:

Security Speed

 often little or

 no change

Agenda

35

Virtual Memory

Virtual vs. physical memory

Page tables

Page faults

Storage and Locality

The storage hierarchy

Spatial and temporal locality

Caching

Effective Caching

Block size

Eviction policy

Order of operations

36

Do Exam Questions Exhibit Temporal Locality?

Here’s a real question from an old exam:

For caching in a memory hierarchy,

what is the best motivation for a larger cache block size?

A. Temporal Locality

B. Spatial Locality

C. Both

D. Neither

B

Spatial locality makes use of

subsequent data after a given

read, so having more data to

keep reading is a win.

Cache Block Size

Large block size:

+ do data transfer less often

+ take advantage of spatial locality

- longer time to complete data transfer

- less advantage of temporal locality

Small block size: the opposite

Typical: Lower in pyramid ⇒ slower data transfer ⇒ larger block sizes

Device Block Size

Register 8 bytes

L1/L2/L3 cache line 128 bytes

Main memory page 4KB or 64KB

Disk block 512 bytes to 4KB

Disk transfer block 4KB (4096 bytes) to

64MB (67108864 bytes)
37

Cache Management

38

Device Managed by:

Registers

(cache of L1/L2/L3 cache and

main memory)

Compiler, using complex code-

analysis techniques

Assembly lang programmer

L1/L2/L3 cache

(cache of main memory)

Hardware, using simple

algorithms

Main memory

(cache of local sec storage)

Hardware and OS, using virtual

memory with complex algorithms

(since accessing disk is

expensive)

Local secondary storage (cache

of remote sec storage)

End user, by deciding which files

to download

Cache Eviction Policies

Best eviction policy: “oracle”
• Always evict a block that is never accessed again, or…

• Always evict the block accessed the furthest in the future

• Impossible in the general case

Worst eviction policy

• Always evict the block that will be accessed next!

• Causes thrashing

• Impossible in the general case!

39

Cache Eviction Policies

Reasonable eviction policy: LRU policy

• Evict the “Least Recently Used” (LRU) block

• With the assumption that it will not be used again (soon)

• Good for straight-line code

• (can be) bad for (large) loops

• Expensive to implement

• Often simpler approximations are used

• See Wikipedia “Page replacement algorithm” topic

40

Locality/Caching Example: Matrix Multiplication

Matrix multiplication

• Matrix = two-dimensional array

• Multiply n-by-n matrices A and B

• Store product in matrix C

Performance depends upon

• Effective use of caching (as implemented by system)

• Good locality (as implemented by you)

41

Two-dimensional arrays are stored in either row-major or column-major order

C uses row-major order

• Access in row order ⇒ good spatial locality

• Access in column order ⇒ poor spatial locality

Locality/Caching Example: Matrix Multiplication

18 19

21 22

20

23

24 25 26

0 1 2

0

1

2

18

19

21

22

20

23

24

25

26

a[0][0]

a[0][1]

a[0][2]

a[1][0]

a[1][1]

a[1][2]

a[2][0]

a[2][1]

a[2][2]

18

21

19

22

24

25

20

23

26

a[0][0]

a[1][0]

a[2][0]

a[0][1]

a[1][1]

a[2][1]

a[0][2]

a[1][2]

a[2][2]

row-major col-major

a

42

Locality/Caching Example: Matrix Multiplication

for (i=0; i<n; i++)

 for (j=0; j<n; j++)

 for (k=0; k<n; k++)

 c[i][j] += a[i][k] * b[k][j];

Reasonable cache effects

• Good locality for A

• Bad locality for B

• Good locality for C

43

a b c

i

k

k

j

i

j

Locality/Caching Example: Matrix Multiplication

Poor cache effects

• Bad locality for A

• Bad locality for B

• Bad locality for C

for (j=0; j<n; j++)

 for (k=0; k<n; k++)

 for (i=0; i<n; i++)

 c[i][j] += a[i][k] * b[k][j];

44

a b c

i

k

k

j

i

j

Locality/Caching Example: Matrix Multiplication

Good cache effects

• Good locality for A

• Good locality for B

• Good locality for C

for (i=0; i<n; i++)

 for (k=0; k<n; k++)

 for (j=0; j<n; j++)

 c[i][j] += a[i][k] * b[k][j];

45

a b c

k

j

i

j

i

k

Next time …

Getting started with ARM!

47

Lobsterthermidor , Raysonho

https://commons.wikimedia.org/wiki/User:Lobsterthermidor
https://commons.wikimedia.org/wiki/User:Raysonho

	Slide 1: Virtual Memory, Storage Hierarchy, and Caching
	Slide 2: Agenda
	Slide 3: Processes
	Slide 4: Processes: Two Key Illusions
	Slide 5: Private Address Space: Illusion
	Slide 6: Private Address Space: Reality
	Slide 7: Virtual & Physical Addresses
	Slide 8: Virtual & Physical Addresses (cont.)
	Slide 9: ArmLab Virtual & Physical Addresses
	Slide 10: ArmLab Virtual & Physical Addresses
	Slide 11: Page Tables
	Slide 12: Page Tables (cont.)
	Slide 13: Storing Page Tables
	Slide 14: Page Faults
	Slide 15: Page Faults
	Slide 16: VM Effects on Security and Speed
	Slide 17: Consequences of Virtual Memory
	Slide 18: VM Effects on Security and Speed
	Slide 19: Revisiting Page Tables…
	Slide 20: Agenda
	Slide 21: Typical Storage Hierarchy
	Slide 22: Typical Storage Hierarchy
	Slide 23: Typical Storage Hierarchy
	Slide 24: Typical Storage Hierarchy
	Slide 25: Cache / RAM Latency
	Slide 26: Disks
	Slide 27: Typical Storage Hierarchy
	Slide 28: Storage Device Speed vs. Size
	Slide 29: Locality
	Slide 30: Locality Example
	Slide 31: Caching
	Slide 32: Caching in a Storage Hierarchy
	Slide 33: Cache Hits and Misses
	Slide 34: VM Effects on Security and Speed
	Slide 35: Agenda
	Slide 36: Do Exam Questions Exhibit Temporal Locality?
	Slide 37: Cache Block Size
	Slide 38: Cache Management
	Slide 39: Cache Eviction Policies
	Slide 40: Cache Eviction Policies
	Slide 41: Locality/Caching Example: Matrix Multiplication
	Slide 42: Locality/Caching Example: Matrix Multiplication
	Slide 43: Locality/Caching Example: Matrix Multiplication
	Slide 44: Locality/Caching Example: Matrix Multiplication
	Slide 45: Locality/Caching Example: Matrix Multiplication
	Slide 47: Next time …

