
COS 217: Introduction to Programming Systems

Debugging

The material for this lecture is drawn, in part, from

The Practice of Programming (Kernighan & Pike) Chapter 5



Goals of this Lecture / Approach

Help you learn about:

•Strategies and tools for debugging your code

Why?

•Debugging large programs can be difficult

•A mature programmer knows a wide variety of debugging strategies

•A mature programmer knows about tools that facilitate debugging

• Debuggers

• Version control systems

• Profilers (a future lecture)

Convince Yourself: What      /   When      /   How       ?

is the buggy |       does it          |     to fix it

behavior               appear2



1. UNDERSTAND ERROR MESSAGES

4

@markusspiske

https://unsplash.com/@markusspiske


A Trio of Bugs

Debugging at build-time is easier than debugging at run-time,

if and only if you…  Understand the error messages!

5

What’s the first error? 

(No fair looking at

the next slide!)

#include <stdio,h>
/* Print "hello, world" to stdout and return 0. 
int main(void)
{
   printf("hello, world\n")
   return 0;
}



fatal flaw

Which tool (preprocessor, 

compiler, or linker) 

reports the error(s)?

$ gcc217 hello.c -o hello
hello.c:1:19: fatal error: stdio,h: No such file or directory
 #include <stdio,h>
                   ^
compilation terminated.

6

#include <stdio,h>
/* Print "hello, world" to stdout and return 0. 
int main(void)
{
   printf("hello, world\n")
   return 0;
}



1 Caught (and fixed!), 2 Outstanding

7

#include <stdio.h>
/* Print "hello, world" to stdout and return 0. 
int main(void)
{
   printf("hello, world\n")
   return 0;
}

What’s the next error? 

(No fair looking at

the next slide!)



Assignment 1 … those were good times.

$ gcc217 hello.c -o hello
hello.c:2:1: error: unterminated comment
 /* Print "hello, world" to stdout and
 ^

8

#include <stdio.h>
/* Print "hello, world" to stdout and return 0. 
int main(void)
{
   printf("hello, world\n")
   return 0;
}

Which tool (preprocessor, 

compiler, or linker) 

reports the error(s)?



3rd time's a charm!

9

#include <stdio.h>
/* Print "hello, world" to stdout and return 0. */ 
int main(void)
{
   printf("hello, world\n")
   return 0;
}

What’s the next error? 

(No fair looking at

the next slide!)



warning: error may be closer than it appears

$ gcc217 hello.c -o hello
hello.c: In function 'main':
hello.c:6:4: error: expected ';' before 'return'
    return 0;
    ^
hello.c:7:1: warning: control reaches end of non-void function [-Wreturn-type]
 }
 ^10

#include <stdio.h>
/* Print "hello, world" to stdout and return 0. */ 
int main(void)
{
   printf("hello, world\n")
   return 0;
}

Which tool (preprocessor, 

compiler, or linker) 

reports the error(s)?



Bonus bug:

11

#include <stdio.h>
/* Print "hello, world" to stdout and return 0. */ 
int main(void)
{
   prntf("hello, world\n");
   return 0;
}

What’s the next error? 

(No fair looking at

the next slide!)



Do I know you? Are you even real?

$ gcc217 hello.c -o hello
hello.c: In function 'main':
hello.c:5:4: warning: implicit declaration of function 'prntf' [-Wimplicit-function-
declaration]
    prntf("hello, world\n");
    ^
/tmp/cc2Q1XR0.o: In function `main':
hello.c:(.text+0x10): undefined reference to `prntf'
collect2: error: ld returned 1 exit status

12

#include <stdio.h>
/* Print "hello, world" to stdout and return 0. */ 
int main(void)
{
   prntf("hello, world\n");
   return 0;
}

Which tool (preprocessor, 

compiler, or linker) 

reports the error(s)?



13

enumerating bugs

A. 5

B. 7

C. 8

D. 9

E. multiple lines

1  #include <stdio.h>
2  #include <stdlib.h>
3  int main(void)
4  {  
5     enum StateType {
6        STATE_REGULAR,
7        STATE_INWORD
8     }
9     printf("just hanging around\n");
10    return EXIT_SUCCESS;
11 }

What is the line number 

with the actual error? 

(No fair looking at the 

next slide!  

… 

Though in this case, it 

may not help!)



Understand Error Messages

$ gcc217 states.c -o states
states.c:9:11: error: expected declaration specifiers or ‘...’ before string constant

What does this 

error message 

even mean?

1  #include <stdio.h>
2  #include <stdlib.h>
3  int main(void)
4  {  
5     enum StateType {
6        STATE_REGULAR,
7        STATE_INWORD
8     }
9     printf("just hanging around\n");
10    return EXIT_SUCCESS;
11 }

14

1  #include <stdio.h>
2  #include <stdlib.h>
3  int main(void)
4  {  
5     enum StateType {
6        STATE_REGULAR,
7        STATE_INWORD
8     };
9     printf("just hanging around\n");
10    return EXIT_SUCCESS;
11 }



Understand Error Messages

Caveats concerning error messages

• Line # in error message may be close-but-not-exact

• Error message may seem nonsensical

• Compiler may not report the real underlying error

Tips for eliminating error messages

• Clarity facilitates debugging

• Make sure code is indented properly

• Look for missing “punctuation”

• ; at ends of structure and enumerated type definitions

• ; at ends of function declarations

• ; at ends of do-while loops

• Work incrementally

• Start at first error message

• Fix, rebuild, repeat
15



2. THINK 

BEFORE 

WRITING
16

@alvarordesign

https://unsplash.com/@alvarordesign


Think Before Writing

Inappropriate changes could make matters worse, so…

Think before changing your code
•Explain the code to:

• Yourself

• Someone else

• A rubber duck / Teddy bear / stuffed tiger?

•Do experiments

• But make sure they're disciplined

17



3. LOOK FOR 

COMMON BUGS

18

@lucieaurelien

https://unsplash.com/@lucieaurelien


A “Rogues’ Gallery”

Some of our “favorites”:
int i;
...
scanf("%d", i);

char c;
...
c = getchar();

switch (i) {
   case 0:
      ...
      break;
   case 1:
      ...
   case 2:
      ...
}

if (i = 5)
   ...

if (5 < i < 10)
   ...

if (i & j)
   ...

while (c = getchar() != EOF)
   ...

What are 

the 

errors?

19

https://en.wikipedia.org/wiki/Rogues_gallery

https://en.wikipedia.org/wiki/Rogues_gallery


Pattern mis-matching 

for (i = 0; i < 10; i++) {
   for (j = 0; j < 10; i++) {
      ...
   }
}

What are 

the errors?for (i = 0; i < 10; i++) {
   for (j = 10; j >= 0; j++) {
      ...
   }
}

20



Yet another "this wasn't an issue in Java" case:

{
   int i;
   ...
   i = 5;
   if (something) {
      int i;
      ...
      i = 6;
      ...
   }
   ...
   printf("%d\n", i);
   ...
}

What value is 

written if this 

statement is 

present?  Absent?

21



4. DIVIDE &

CONQUER

22
@namzo

https://unsplash.com/@namzo


Divide and Conquer (Input)

Divide and conquer to debug a program:
•Incrementally find smallest input file that illustrates the bug

•Approach 1:  Decrease input

• Start with file

• Incrementally remove lines

until bug disappears

• Examine most-recently-removed lines

•Approach 2:  Increase input

• Start with small subset of file

• Incrementally add lines

until bug appears

• Examine most-recently-added lines23

! ! OK

OK OK !



Divide and Conquer (Code)

Divide and conquer: To debug a module…

•Incrementally find smallest client subset that illustrates the bug

•Approach 1:  Decrease code tested

• Start with test client

• Incrementally inactivate (don't actually remove!) lines of code until bug disappears

• Examine most-recently-excluded lines

•Approach 2:  Increase code tested

• Start with minimal client

• Incrementally add lines of test client until bug appears

• Examine most-recently-added lines
24



5. FOCUS 

ON NEW

CHANGES
25

@loic

https://unsplash.com/@loic


Focus on Recent Changes

Focus on recent changes

•Corollary:  Debug now, not later

Monotonous but Easier:

(1) Compose a little

(2) Test a little

(3) Debug a little

(4) Compose a little

(5) Test a little

(6) Debug a little

 …

Attractive but Difficult:

(1) Compose entire program

(2) Test entire program

(3) Debug entire program

26



Focus on Recent Changes

Focus on recent change (cont.)

•Corollary:  Maintain old versions

Low overhead but

Difficult recovery:

(1) Change code

(2) Note new bug

(3) Try to remember what

     changed since last 

     version

Higher overhead but 

Easier recovery:

(1) Backup current version

(2) Change code

(3) Note new bug

(4) Compare code with 

     last version to

     determine what changed

27
git diff



Maintaining Old Versions

Use a Revision Control System 

(Since you have to set it up anyway to get the files, 

you might as well actually use it!)

Allows programmer to:
• Check-in source code files from working copy to repository

• Commit revisions from working copy to repository

• saves all old versions

• Update source code files from repository to working copy

• Can retrieve old versions

•Appropriate for one-developer projects

•Extremely useful, almost necessary for multideveloper projects!

29



6. ADD (MORE)

INTERNAL TESTS

30

@alexloup

https://unsplash.com/@alexloup


Add More Internal Tests

•Internal tests help find bugs (see “Testing” lecture)

•Internal tests also can help eliminate bug locations from your search space

• Validating parameters & checking invariants can help avoid bug hunting your entire codebase!

31



7. DISPLAY

TO OUTPUT

32

@austinchan

https://unsplash.com/@austinchan


Display Output

Write values of important variables at critical spots

•Possibly poor:

•Maybe better:

•Better still:

printf("%d", keyvariable);

stdout is buffered; 

program may crash 

before output appears

printf("%d\n", keyvariable);
fflush(stdout);

printf("%d\n", keyvariable);

Call fflush() to flush 

stdout buffer explicitly

Printing '\n' flushes the 

stdout buffer, but not if 

stdout is redirected to a 

file

33



Display Output

•Maybe even better:

•Maybe even better still:

fprintf(stderr, "%d\n", keyvariable);

FILE *fp = fopen("logfile", "w");
…
fprintf(fp, "%d\n", keyvariable);
fflush(fp);

Write debugging 

output to stderr; 
debugging output can 

be separated from 

normal output via 

redirection

Write to a log file

Bonus:  stderr is 

unbuffered

34



8. USE A

DEBUGGER

35
@t_ahmetler

https://unsplash.com/@t_ahmetler


The GDB Debugger

GNU Debugger
•Part of the GNU development environment

•Integrated with Emacs editor

•Allows user to:

• Run program

• Set breakpoints

• Step through code one line at a time

• Examine values of variables during run

• Etc.

For details see precept materials

36



COS 217: Introduction to Programming Systems

Debugging Dynamic Memory Bugs

37



9. COMMON CULPRITS

(This overlaps with 3. “Look for Common Bugs” but is more constrained.) 
38

@hjmckean

https://unsplash.com/@hjmckean


Look for Common DMM Bugs

Some of our “favorites”:

int *p; 
... /* code not involving p */
*p = somevalue;

char *p; 
...
fgets(p, 1024, stdin);

int *p;
...
p = malloc(sizeof(int));
*p = 5;
...
free(p);
...
*p = 6;

What are 

the errors?

39



Look for Common DMM Bugs

Some of our “favorites”:

int *p;
...
p = malloc(sizeof(int));
...
*p = 5;
p = malloc(sizeof(int));

int *p;
...
p = malloc(sizeof(int));
...
*p = 5;
...
free(p);
...
free(p);

What are 

the errors?

40



10. DIAGNOSE 

SEGFAULTS

WITH GDB
41

@bill_oxford

https://unsplash.com/@bill_oxford


Diagnose Seg Faults Using GDB

Segmentation fault => make it happen in gdb
•Then issue the gdb where command

•Output will lead you to the line that caused the fault

• But that line may not be where the error resides!

42



11. MANUALLY 

INSPECT MALLOCS

43

@markusspiske

https://unsplash.com/@markusspiske


Manually Inspect Malloc Calls

Manually inspect each call of malloc()
•Make sure it allocates enough memory

Do the same for calloc() and realloc()

44



Manually Inspect Malloc Calls

Some of our “favorites”:

char *s1 = "hello, world";
char *s2;
s2 = malloc(strlen(s1));
strcpy(s2, s1);

long double *p;
p = malloc(sizeof(long double *));

char *s1 = ”hello, world";
char *s2;
s2 = malloc(sizeof(s1));
strcpy(s2, s1);

long double *p;
p = malloc(sizeof(p));

What are 

the errors?

45



12. HARD-CODE MALLOC AMOUNTS

46

@seansinspired

https://unsplash.com/@seansinspired


Hard-Code Malloc Calls

Temporarily change each call of malloc() to request

a large number of bytes
•Say, 10000 bytes

•If the error disappears, then at least one of your calls is requesting too few bytes

Then incrementally restore each call of malloc()
•When the error reappears, you might have found the culprit

Do the same for calloc() and realloc()

47



13. COMMENT OUT CALLS TO FREE

free

48



Comment-Out Free Calls 

Temporarily comment-out every call of free()
•If the error disappears, then program is

• Freeing memory too soon, or

• Freeing memory that already has been freed, or

• Freeing memory that should not be freed,

• Etc.

Then incrementally “comment-in” each call of free()
•When the error reappears, you might have found the culprit

49



14. USE A MEMORY PROFILER TOOL

50

Meminfo



Go forth on your debugging adventure!

51

Tanya Dusett

https://unsplash.com/@sinistertanya

	Slide 1: Debugging
	Slide 2: Goals of this Lecture / Approach
	Slide 4: 1. Understand error messages
	Slide 5: A Trio of Bugs
	Slide 6: fatal flaw
	Slide 7: 1 Caught (and fixed!), 2 Outstanding
	Slide 8: Assignment 1 … those were good times.
	Slide 9: 3rd time's a charm!
	Slide 10: warning: error may be closer than it appears
	Slide 11: Bonus bug:
	Slide 12: Do I know you? Are you even real?
	Slide 13: enumerating bugs
	Slide 14: Understand Error Messages
	Slide 15: Understand Error Messages
	Slide 16: 2. think  before  writing
	Slide 17: Think Before Writing
	Slide 18: 3. Look For  Common Bugs
	Slide 19: A “Rogues’ Gallery”
	Slide 20: Pattern mis-matching 
	Slide 21: Yet another "this wasn't an issue in Java" case:
	Slide 22: 4. divide & conquer
	Slide 23: Divide and Conquer (Input)
	Slide 24: Divide and Conquer (Code)
	Slide 25: 5. Focus  on new changes
	Slide 26: Focus on Recent Changes
	Slide 27: Focus on Recent Changes
	Slide 29: Maintaining Old Versions
	Slide 30: 6. Add (more) Internal tests
	Slide 31: Add More Internal Tests
	Slide 32: 7. display to output
	Slide 33: Display Output
	Slide 34: Display Output
	Slide 35: 8. use a debugger
	Slide 36: The GDB Debugger
	Slide 37: Debugging Dynamic Memory Bugs
	Slide 38:  9. common culprits
	Slide 39: Look for Common DMM Bugs
	Slide 40: Look for Common DMM Bugs
	Slide 41: 10. diagnose  segfaults with gdb
	Slide 42: Diagnose Seg Faults Using GDB
	Slide 43: 11. manually  inspect mallocs
	Slide 44: Manually Inspect Malloc Calls
	Slide 45: Manually Inspect Malloc Calls
	Slide 46:  12. hard-code malloc amounts
	Slide 47: Hard-Code Malloc Calls
	Slide 48:  13. comment out calls to free
	Slide 49: Comment-Out Free Calls 
	Slide 50: 14. Use a memory profiler tool
	Slide 51: Go forth on your debugging adventure!

