
Final Exam Spring 2024

This exam consists of 10 questions (85 points). You have 180 minutes: budget your time
wisely. Assume the ArmLab/gcc217 environment unless otherwise stated in a problem.

Do all of your work on these pages. You may use the provided blank spaces for scratch
space, however this exam is preprocessed by computer, so for your final answers to be
scored you must write them inside the designated spaces and fill in selected circles and
boxes completely (and , not✔ or✘). Please make text answers dark and neat.

Name: NetID:

Precept:

◯ P01 / P02 - MW
Xiaoyan Li

◯ P10 - TTh 12:30
Dwaha Daud

◯ P07 TTh 2:30
Nanqinqin Li

◯ P03 - TTh 12:30
Donna Gabai

◯ P05 - TTh 1:30
Donna Gabai

◯ P08 TTh 3:30
Indu Panigrahi

◯ P04 - TTh 12:30
Guðni Nathan Gunnarsson

◯ P06 - TTh 1:30
Austin Li

◯ P09 TTh 7:30
Gongqi Huang

This is a closed-book, closed-note exam, except you are allowed one double-sided
study sheet. Please place items that you will not need out of view in your bag or under
your working space at this time. Electronic devices such as cell phones, laptops,
smartwatches (except to check the time), etc. may not be used during this exam.

This examination is administered under the Princeton University Honor Code. Students
should sit one seat apart from each other and refrain from talking to other students
during the exam. All suspected violations of the Honor Code must be reported to
honor@princeton.edu.

In the box below, copy and sign the Honor Code pledge before turning in your exam:
“I pledge my honor that I have not violated the Honor Code during this examination.”

X_________________________________

Christopher Moretti
Sample Solutions

Christopher Moretti
10th %ile: 59/85
25th %ile: 68/85
Median: 74/85
75th %ile: 78/85
90th %ile: 82/85
Mean: 71.5/85
StdDev: 10/85

Question 1: Artillery 8 points

Since 2022, Princeton Stadium boasts a new Daktronics video board just beyond its
south endzone. The video board is a 19' high × 49' wide two-dimensional array of pixels.

Each pixel consists of:
● components for 3 primary colors (red, green, and blue – each represented as an

integer in the range 0–255, inclusive)
● references to up to four neighbors (left, right, above, and below), and
● its own x and y coordinates (indices) within the array of pixels

We want to define an interface and implementation for streaming to Princeton Stadium’s
main video board. To do so, let’s assume that there will only ever be one such gigantic
video board in the stadium.

a. Would this video board module be better represented as an abstract object (AO)
or an abstract data type (ADT)? Write your answer in the box below:

b. Would a pixel module be better represented as an abstract object (AO) or an
abstract data type (ADT)? Write your answer in the box below:

c. In the box below, give plausible definitions (type and name) for pixel’s state
variables, as they would appear as static file-scope variables (if you put in b.
that it’s an AO) or fields of a pixel struct (if you put in b. that it’s an ADT).

Page 2 of 14

Christopher Moretti
AO
(There’s only 1.)

Christopher Moretti
ADT

Christopher Moretti
(There will be many.)

Christopher Moretti
Color components should be 3 unsigned integers. The best fit would be:
unsigned char rgb[3]; or unsigned char r, g, b;

Neighbors should be 4 pixel pointers, e.g.:
struct pixel *up, *down, *left, *right; or struct pixel *neighbors[4];

An array index should be a size_t:
size_t x, y; or size_t coordinates[2];

Question 2: Campanile 12 points

This program is intended to print out each of its command line arguments (including the
executable name itself) in order, each on its own line. Unfortunately, the ten lines from
the core of its implementation have become jumbled, and the macro definitions of
PPC_ZERO and PC_ZERO have been lost:

#include <stdio.h>

int main(int argc, char *argv[]) {

A char **ppc = argv;

B while(*ppc != PPC_ZERO) {

C } /* end while(*ppc ...) { */

D char *pc = *ppc;

E while(*pc != PC_ZERO) {

F } /* end while(*pc ...) { */

G ppc++;

H pc++;

I putchar('\n');

J putchar(*pc);

return 0;

}

a. Which is the correct ordering of lines A through J?

____ ____ ____ ____ ____ ____ ____ ____ ____ ____

b. Which are the most correct literal values for PPC_ZERO and PC_ZERO?

◯ PPC_ZERO: NULL and PC_ZERO: NULL
◯ PPC_ZERO: NULL and PC_ZERO: '\0'
◯ PPC_ZERO: '\0' and PC_ZERO: NULL
◯ PPC_ZERO: '\0' and PC_ZERO: '\0'

Page 3 of 14

Christopher Moretti
A B D E J H F I/G G/I C

Christopher Moretti

Christopher Moretti
A: must come first: this is the loop control variable for the
 outer loop, and declarations must be at the top of a block.

B: this is the outer loop through all the items in argv.
 This loop will end at the NULL element at the end of argv.

D: this is the loop control variable for the inner
 loop, must be updated for *each* new value of ppc in
 the outer loop, and must appear at the top of a block.

E: this is the inner loop over chars of the current argv item.

J: the current char must be printed before the pointer moves.

H: this is the update step for the inner loop.

F: the newline and the outer loop variable update
 must be outside the inner loop.

I and G in either order: print the newline so that each item
 in argv appears on its own line and advance to the next
 item in argv, respectively — must be inside the outer loop.

C: this ends the outer loop body.

Christopher Moretti
ppc is a pointer to a pointer to a char,
so *ppc is a pointer to a char. A zero
value for a pointer is NULL.

pc is a pointer to a char, so *pc is a char.
The zero value for a char is the nullbyte.

Question 3: Seventh Solfège Syllable 8 points

Consider the following partial implementation of a “round” song as a circular queue of
music notes. Queues are “First In, First Out”. The questions appear on page 5.

enum note { DO, RE, MI, FA, SOL, LA, TI };

struct node {

enum note en;

struct node *next;

};

struct queue {

struct node *tail;

struct node *head;

size_t size;

};

struct queue *Queue_new() {

return calloc(1, sizeof(struct queue));

}

void Queue_free(struct queue *psQ) {

struct node *curr;

assert(psQ != NULL);

curr = psQ->head;

while(curr != NULL) {

psQ->head = curr->next;

free(curr);

if(/* to be completed in part a. */)

break;

curr = psQ->head;

}

free(psQ);

}

void Queue_append(struct queue *psQ, enum note enNote) {

struct node *new;

assert(psQ != NULL);

new = calloc(1, sizeof(struct node));

if(new == NULL)

return;

if(psQ->head == NULL)

psQ->head = new;

else

/* to be completed in part b. */

psQ->tail = new;

psQ->size++;

new->next = psQ->head;

new->en = enNote;

}

Page 4 of 14

a. In the box below, complete the missing conditional in the Queue_free function,
so that the function returns after freeing all allocated dynamic memory.

if()

b. In the box below, complete the missing else clause in the Queue_append
function, so that the function appends the new node to the tail end of the queue.
This should be a single C assignment.

c. In the box below, write a single C statement that would establish Q_T as a type
alias for the struct queue * opaque pointer type.

The exam continues on page 6. The remainder of this page may be used for scratch
work, however any answers given on this page below this text will not be graded.

Page 5 of 14

Christopher Moretti
Check that the last item in the queue was just freed,
and thus the loop should end.
Alternate valid check: if(--(psQ->size) == 0)

Christopher Moretti
curr == psQ->tail

Christopher Moretti
psQ->tail->next = new;

Christopher Moretti
Point the current tail element at the new element.
(This must be done before the lines after the if
that change psQ->tail to point to the new element
and point the new element's next at psQ->head.)

Christopher Moretti
typedef struct queue *Q_T;

Question 4: Hedera helix 16 points

Consider the following incomplete scaffolding for a computational biology program:

enum base {A, C, G, T, U};

struct pair {

enum base b1;

enum base b2;

};

struct pair wcf1;

static struct pair wcf2 = {A, T};

void DNA() {

wcf1.b1 = G;

wcf1.b2 = C;

/* other code will follow */

}

void mRNA() {

struct pair mRNApairs[3] = { {G, C}, {U, A}, {A, T} };

/* other code will follow */

}

void tRNA() {

static struct pair tRNApairs[2] = { {G, C}, {A, U} };

/* other code will follow */

}

Complete the table below to indicate the scope, linkage, and duration of each variable
and the section of memory in which it resides. For scope, write either “FILE” or
“BLOCK”; for linkage, write either “INTERNAL” or “EXTERNAL”; and for duration, write
either “PROCESS” or “TEMPORARY”.

SCOPE LINKAGE DURATION SECTION

wcf1

wcf2

mRNApairs

tRNApairs

Page 6 of 14

Christopher Moretti
FILE EXTERNAL PROCESS BSS

FILE INTERNAL PROCESS DATA

BLOCK INTERNAL TEMPORARY STACK

BLOCK INTERNAL PROCESS DATA

Question 5: Abbey Arcade 10 points

Imagine a proper Makefile that supports partial builds and produces an executable
named arch according to the dependency graph shown below. (Arrows from header
files indicate #includes, e.g., pier.c #includes impost.h. Arrows from other files
indicate the progression of the build process, e.g., pier.o is built out of pier.c.)

Note that each of the seven architectural terms in the source files’ names begins with a
unique letter, so you may choose to use that letter instead of the full word (e.g., i.h
instead of impost.h or p.o instead of pier.o) as you answer the questions below.

a. In the box below, write the list of dependencies for the target voussoir.o

b. In the box below, write the (gcc217) command for building the target arch

Page 7 of 14

Christopher Moretti
voussoir.c crown.h impost.h springer.h

Christopher Moretti
.o file’s matching .c file +
all the .h files that .c file
#includes (incl. indirectly)

Christopher Moretti
gcc217 keystone.o voussoir.o pier.o -o arch

You may refer to this abbreviated ARM assembly language reference for Q6 – Q9.
Instruction(s) Description

{add,sub,lsl} dst, src1, src2 dst = src1 {+, -, <<} src2

{beq,bne} label Go to label if comparison was {“equal”, “not equal”}

{b,bl} label {Unconditionally go to , Call function at} label

cmp first, second Compare first with second, setting bits in PSTATE

ldr dst, [src] Load 4 or 8 bytes pointed to by src into dst

ldrb dst, [src] Load 1 byte pointed to by src into dst

str src, [dst] Store 4 or 8 bytes in src to memory pointed to by dst

mov dst, src Copy contents of register src to register dst

ret Return to address pointed to by x30

R0 – R7 and R0 (w or x) Used for arguments to and return value from functions

R0 – R7 and R9 - R15 (w or x) Caller-saved scratch registers

Question 6: Founding Document 4 points

These symbolic constants have been defined in an ARM assembly language program:

.equ PSTRUCT, 8

.equ FIELD, 16

.equ VAR, 16

Later on in the program, this series of instructions appear:

// REPLACE THIS COMMENT

ldr x0, [sp, PSTRUCT]

add x0, x0, FIELD

mov x1, 217

ldr x0, [x0, x1, lsl 3]

str x0, [sp, VAR]

In the box below, write an appropriate line of C – using variable names similar to the
.equs defined above – that could replace the comment on the first line in the previous
box in order to explain those 5 instructions.

Page 8 of 14

Christopher Moretti
// var = pStruct->field[217];

Question 7: Pre-Revolution 11 points

Consider the following function that returns the length of a string’s prefix that contains
only a specific character. For example, Str_prefixLen("CClub", 'C') will return 2.

#include <stddef.h>

size_t Str_prefixLen(const char *s, char c) {

if(*s != c)

return 0;

return 1 + Str_prefixLen(s+1, c);

}

In the box below, write the function in ARM assembly language, with these restrictions:
1. the algorithm should be faithful to the C code (i.e., it should still be recursive)
2. the stack should be used only for x30 (i.e., not local variables and parameters)
3. Scratch registers should be used for local variables, parameters, and any

temporary values required for your computations.

.section ".text"

.global Str_prefixLen
Str_prefixLen:

ret

Page 9 of 14

Christopher Moretti
* 2pt: prolog (sub+str x30) +
 any state required for code (e.g.,
 callee-saved registers) + matching epilog
 (ldr x30 + add)
 (1pt for partially correct)
* 2pt: ldrb w?, [x0]
 (1pt for just ldr, bad syntax, etc.)
* 1pt: cmp with w1 + conditional branch
* 1pt: add to s (get s+1 for iteration/recursion)
* 1pt: recursive bl
* 1pt: correct return value in 0 case
* 1pt: correct return value in adding case
* 1pt: follow instructions: no stack besides x30
* 1pt: follow instructions: only scratch registers

Christopher Moretti
 sub sp, sp, 16
 str x30, [sp]

 ldrb w2, [x0]
 cmp w2, w1
 beq recur
 mov x0, xzr
 b epilog

recur:
 add x0, x0, 1
 bl Str_prefixLen
 add x0, x0, 1

epilog:
 ldr x30, [sp]
 add sp, sp, 16

Question 8: Veranda 10 points

Consider the following two patterns for ARM assembly language and instructions, which
will be needed to complete parts a. through e. of this question on page 11.

Page 10 of 14

In the box beside each machine language instruction encoding below, write the number
of the corresponding assembly language instruction from the list on the right, or NONE if
it does not match any of the instructions in the list. Each option, including NONE, will be
used exactly once.

Warning: the N, immr, and imms fields in the immediate operand version of the
instruction are inscrutable. But don’t despair! You do not need to produce or interpret
these fields’ values in order to solve this problem: the other fields give enough
information to do the matching below.

a. 0xf27f0020 1. and w0, w1, w2

b. 0x121f0020 2. and x0, x1, x2

c. 0x8a020020 3. and w0, w1, #2

d. 0x0a020020 4. and x0, x1, #2

e. 0x927f0020

The exam continues on page 12. The remainder of this page may be used for scratch
work, however any answers given on this page below this text will not be graded.

Page 11 of 14

Christopher Moretti
N
3
2
1
4

Question 9: Special Regalia 3 points

In one of your first ARM precept handouts, a key was given for interpreting the
allowable registers used as register operands in ARM assembly language instructions:

Wn 4 byte general register, or WZR
Wn|WSP 4 byte general register, or WSP
Xn 8 byte general register, or XZR
Xn|SP 8 byte general register, or SP

For many instructions, their register operands may be SP but not ZR; while other
instructions have the opposite restriction: their register operands may be ZR but not SP.
Violating this will result in an assembler error, for example:

zrspzr.s:1: Error: operand 2 must be an integer register
-- `sub xzr,sp,xzr'

In the box below, explain in 1 sentence why SP and ZR must be mutually exclusive in
these instructions’ operands. (Hint: consider their machine language representation.)

Page 12 of 14

Christopher Moretti
Registers are encoded into machine language
instructions in 5 bits. Both SP and ZR have the
encoding 11111 (31), so each instruction must
specify which "register 31" it uses.

Question 10: Tetragon 3 points

Consider this DFA, which handles strings consisting of only the characters x and y.
The top left state is the start state. The bottom right state is the only accepting state.

Any possible state transition that is not shown with an edge should be assumed to be a
self-loop (i.e., remain in the same state). E.g., when the bottom middle state reads y, it
stays there. Similarly, once we are in the accept state, we will stay there forever.

In the box below, give a short English description of the set of strings this DFA accepts.

Page 13 of 14

Christopher Moretti
This DFA accepts strings that have:
at least 2 x characters AND
at least 2 y characters.

Question 10 was the last question. This page is only for frivolity.

For 0 points (so please don’t think about this if your time would be better spent
reviewing one of the actual questions!), but significant puzzle-solving respect:

This exam had 10 questions, with each title referencing one member of a group of 11.
If the exam had one more question, to complete the set, what might its title have been?

The space below is intentionally left blank. It may be used for scratch work, however
any answers given on this page will not be graded.

Page 14 of 14

Christopher Moretti
Many students reasonably deduced that the underlines in question titles were meaningful,
but unfortunately they weren't about the exam's puzzle, just the theme/context of the question:
* Q1: Art - a problem about pixels.
* Q2: nil - part b. is dealing with zero-like values.
* Q3: Solfège - a problem about music with an enum type enumerating the notes on the scale.
* Q4: helix - a problem about DNA, which has the form of a double helix.
* Q5: Arcade - the filenames in the Makefile were all parts of a arch, with file dependencies
 approximately accurately depicting architectural structure
* Q6: Document - a problem asking you to write a comment (i.e., document) some code
* Q7: Pre - a problem about a prefix function
* Q8: and - the instruction whose assembly language and machine language is being matched
* Q9: Sp reg - a problem asking a detail about the sp register
* Q10: Tetragon - the shape of the DFA in the problem

But if the underlines weren't the puzzle theme, what was? The problem titles as a whole!
Each problem title was a synonym for a member of the set:
* Q1: Artillery might, for example, be a **cannon**
* Q2: A campanile is a bell **tower**
* Q3: The seventh note in a major scale is **ti**
* Q4: Hedera helix is the scientific name for **ivy**
* Q5: A covered walk in an abbey or monastery with columns or arches to one side is a **cloister**
* Q6: The founding document of an institution or organization may be a **charter**
* Q7: Many countries' Pre-Revolution eras were **colonial**
* Q8: A veranda is an open air porch or **terrace**
* Q9: Special regalia for graduation is a **cap and gown**
* Q10: A tetragon is a quadrilateral or **quadrangle**

These are, of course, Princeton's eating clubs.
(There was a minuscule hint in the sample call at the top of Q7.)

The one that's missing is Cottage. So here are some examples of plausible 11th questions:
* a problem about C expression types playing off of 217's variable naming conventions:
 "cHalet, bUngalow, dAcha, or lOdge".
* another linked list traversal problem:
 “ dled cheese”

Christopher Moretti
cur

