
COS 217, Fall 2023
Final Exam

This exam consists of 6 questions, and you have 120 minutes – budget your time wisely. Do all
of your work on these pages (using the back for scratch space), and give the answer in the
space provided. Note that the exams will be scanned and graded online, so ONLY ANSWERS
IN THE BOXES WILL BE GRADED. Assume the ArmLab/Linux/C/gcc217 environment
unless otherwise stated. This is a closed-book, closed-note exam, and only 1 two-sided page of
notes is allowed. Please place items that you will not need out of view in your bag or under your
working space at this time. Electronic devices such as cell phones, laptops, tablets, etc. may not
be used during this exam.

Name: NetID: Precept:

P01 MW 1:30 Christopher Moretti P06 TTh 1:30 Gongqi Huang
P02 MW 3:30 Christopher Moretti P07 TTh 2:30 Nanqinqin Li
P03 TTh 12:30 Guðni Nathan Gunnarsson P09 TTh 3:30 Jianan Lu
P04 TTh 12:30 Sam Ginzburg P10 TTh 7:30 Dwaha Daud
P05 TTh 1:30 Indu Panigrahi

This examination is administered under the Princeton University Honor Code. Students should
sit one seat apart from each other, and refrain from talking to other students during the exam. All
suspected violations of the Honor Code must be reported to honor@princeton.edu.

Write out and sign the Honor Code pledge before turning in the test:

“I pledge my honor that I have not violated the Honor Code during this examination.”

Pledge, written out exactly as above:

Signature:

Page 1 of 17

mailto:honor@princeton.edu

1. ADT vs. AO

An undirected graph is defined as a collection of nodes with edges. These edges do not have a
direction: if node A and node B share an edge, A is a neighbor of B, and B is a neighbor of A.
We want to design a module for such a graph. Assume that we can have only one graph in the
entire program, and assume that the graph can contain more than one node.

(a) Would this undirected graph API be better represented as an abstract object (AO) or an
abstract data type (ADT)? Write only ADT or AO: (3 pts total for a and b)

AO

(b) Write a brief (a few words or a sentence) justification for your answer in part (a):

The problem statement indicates that there is only one graph in the
program. The AO abstraction reflects this "singleton pattern" better
than ADTs, which can have multiple instances instantiated.

(c) Would a node in this undirected graph be better represented as an abstract object (AO) or an
abstract data type (ADT)? Write only ADT or AO: (3 pts total for c and d)

ADT

(d) Write a brief (a few words or a sentence) justification for your answer in part (c):

The problem statement indicates that there may bemany nodes in the
graph. The ADT design reflects this: we can instantiate multiple
distinct nodes that coexist.

Page 2 of 17

(e) Assume that each node stores a unique string and can have up to 5 neighbors. Write the
definition of a struct GraphNode to represent each node in the graph, assuming that no storage
outside of the struct will be allocated to represent the neighbor pointers: (3 pts)

struct GraphNode {

char *string;
struct GraphNode *neighbors[5];
/* alternative: struct GraphNode *n1, *n2, *n3, *n4, *n5; */

};

(f) Now instead assume that each node can have an arbitrary number of neighbors (still together
with a string label) and that storage for the neighbor pointers will be allocated on the heap. Also
assume that it is a requirement of the API that the number of neighbors of a node be available as
a constant-time operation. Write the definition of a struct GraphNode to represent each node
in the graph, assuming these new requirements: (3 pts)

struct GraphNode {

char *s;
size_t n;
struct GraphNode **neighbors;

};

Page 3 of 17

2. DMM errors

Consider the following C program, with one piece of code missing:

#include <stdlib.h>
#include <stdio.h>

void square(int i, int **piResult)
{

*piResult = (int *) malloc(sizeof(int));
if (*piResult == NULL) {

fprintf(stderr, "Insufficient memory available\n");
return;

}

**piResult = i * i;
}

int main()
{

int i = 5;
int *piResult = NULL;
int *piExtra = NULL;

square(i, &piResult);

/* INSERT CODE HERE */

printf("%d is one plus the square of %d", *piResult, i);
return 0;

}

Page 4 of 17

Identify the memory management bugs (if any) that occur if the /* INSERT CODE HERE */
comment is replaced with each of the code snippets in parts a-e. Write the letters for ALL
relevant bugs in the boxes at right, or write "None" if none of the issues are present. Consider
bugs in the entire resulting program, not just the provided code snippets.

A: accesses unallocated memory
B: accesses freed memory (dangling pointer)
C: leaks memory (does not free allocated memory)
D: frees unallocated memory
E: double-frees allocated memory
None: none of the memory management errors above are present

Code (2 pts ea) Bug(s)

(a) piResult++;
A C

(b) piResult++;
free(piResult);

A C D

(c) *piResult = *piResult + 1;
C

(A is also acceptable. See
below.)

(d) *piResult = *piResult + 1;
free(piResult);

B
(A is also acceptable. See

below.)

(e)
piExtra = piResult;
*piResult = *piResult + 1;
free(piExtra);

B
(A is also acceptable. See

below.)

(f)

free(piResult);
piExtra = piResult;
*piExtra = *piExtra + 1;
free(piExtra);

B E
(A is also acceptable:
square should exit() on

malloc failure, or main should
guard printf.)

Page 5 of 17

3. VM, Bitwhacking, and Hash Tables

The heart of a virtual memory implementation is the differentiation between virtual and physical
addresses. In this question, you will write C code that translates from a virtual address to a
physical address.

On AArch64, 64-bit addresses can be divided into a 48-bit page number in the most-significant
bits, and a 16-bit offset that is identical between virtual and physical addresses. Assume that you
are provided with a function virt_to_phys_page() that returns the physical page number
corresponding to a given virtual page number:

size_t virt_to_phys_page(size_t virt_page);

(a) Implement the following function, which returns the physical address corresponding to a
given virtual address, calling virt_to_phys_page() as appropriate. Assume that the virtual
address passed in as virt_addr is valid and mapped-in to physical memory. (8 pts)

size_t virt_to_phys_addr(size_t virt_addr)
{

There are many correct options. Each will require isolating the virtual
page number, saving the offset, getting the physical page number, and
putting the physical page number and offset into place in the result to
return.

size_t virt_page, offset, phys_page, phys_addr;
virt_page = virt_addr >> 16;
offset = virt_addr & 0xFFFF; /* or (virt_addr << 48) >> 48 */
phys_page = virt_to_phys_page(virt_page);
phys_addr = phys_page << 16;
phys_addr = phys_addr | offset; /* or + or ^, but not || */
return phys_addr;

}

Page 6 of 17

Now assume that the virtual-to-physical page mappings (the "page tables") are implemented as a
hash table, using the following data structure:

struct Binding {
size_t virt_page, phys_page;
struct Binding *next;

};
struct PageTable {

struct Binding *buckets[BUCKET_COUNT];
};
struct PageTable page_table; /* Global variable */
extern size_t hash_page(size_t page); /* Hash function */

(b) Implement a version of virt_to_phys_page() that uses the page_table global variable,
calling hash_page() as appropriate. If the virtual page number is not found, return 0. (10 pts)

size_t virt_to_phys_page(size_t virt_page)
{

struct Binding *cur;
cur = page_table.buckets[hash_page(virt_page) % BUCKET_COUNT];
while(cur != NULL) {

if(cur->virt_page == virt_page)
return cur->phys_page;

cur = cur->next;
}
return 0;

}

Page 7 of 17

4. Memory Sections

The following questions ask you to identify the most relevant memory section, from the
following list: TEXT, RODATA, DATA, BSS, STACK, HEAP. Write the (single) section
corresponding to the answer in the boxes at right.

For some of the questions, you will need to refer to the following program:

#include <stdio.h>

int result;

int multiply(int left, int right)
{

return left * right;
}

int main()
{

const char *greetString = "Choose two numbers!\n";
int firstNumber;
static int secondNumber = 0;
int (*mul)(int, int) = &multiply;

printf("%s", greetString);
scanf("%d %d", &firstNumber, &secondNumber);

result = (*mul)(firstNumber, secondNumber);

printf("The result is: %d\n", result);
return 0;

}

Page 8 of 17

Question (2 pts ea)
Memory section:

TEXT, RODATA, DATA,
BSS, STACK, HEAP

(a) In AArch64 assembly language, which section of memory
does the stack pointer (sp) register point to?

STACK

(b) In AArch64 assembly language, which section of memory
does the program counter (pc) register point to?

TEXT

(c) In the program shown above, in which memory section is
the result variable stored?

BSS
(process duration,

not initialized in def.)

(d) In the program shown above, in which memory section is
the greetString variable stored?

STACK
(the variable, not the
string contents)

(e) In the program shown above, in which memory section is
the secondNumber variable stored?

DATA
(process duration,

definition initializes)

(f) In the program shown above, which memory section does
the mul variable point to?

TEXT
(the target, not the
pointer mul itself)

(g) In the program shown above, in which memory section is
the string literal "The result is: %d\n" stored?

RODATA

(h)
Given a const char array (also known as a string) that has
been initialized to "Hello, world!\n", in which memory
section could that array variable NOT be stored?

TEXT
(just machine code, not

strings)

Page 9 of 17

AArch64 Assembly Language Reference for Questions 5 and 6

Registers / Instructions Description

x0..x30, xzr / w0..w30, wzr 8-byte / 4-byte registers; xzr and wzr hold 0

x0..x7 / w0..w7 Caller-saved scratch registers, hold parameters

x0 / w0 Holds return value

x19..x28 / w19..w28 Callee-saved scratch registers

x30 Link register, holds return address

sp Stack pointer register

mov dst, src Copy src (register or immediate value) to dst

add/sub/mul dst, src1, src2 Add / subtract / multiply src1 and src2, storing result in dst

adds/subs/muls dst, src1, src2 Same as above, but also set condition flags

cmp src1, src2 Set condition flags based on comparison of src1 and src2

beq / bne label Branch to label if equal / not equal

blt / ble / bgt / bge label Branch to label if < / <= / > / >= (signed)

blo / bls / bhi / bhs label Branch to label if < / <= / > / >= (unsigned)

b label Branch to label unconditionally

bl label Call function at label and save return address in x30

ret Return to code at address in x30

ldr dst, [Xn] Load from memory address in register Xn into register dst

str src, [Xn] Store into memory address in register Xn from register src

[Xn, offset] Immediate offset addressing mode: addr = reg[Xn] + offset

[Xn, Xm] Register offset addressing mode: addr = reg[Xn] + reg[Xm]

[Xn, Xm, LSL n] Scaled register offset addressing mode:
addr = reg[Xn] + (reg[Xm] << n), n = 3 for 8-byte, 2 for 4-byte

Page 10 of 17

5. Assembly Errors

For each of the following snippets of C code, analyze the corresponding AArch64 assembly and
choose the single most appropriate option depending on whether the code: (3 pts ea)

A: Has no errors
B: Doesn't assemble
C: Causes a segmentation fault or other run-time crash
D: Doesn't segfault, but doesn’t achieve the C code's intended purpose

(a) C code:
long volume = length * width * height;

Assembly:
// Assume that volume, length, width, and height are on the stack at
// offsets 8, 16, 24, and 32, respectively.
ldr x0, [sp, 16]
ldr x1, [sp, 24]
ldr x2, [sp, 32]
mul x0, x1
mul x0, x2
str x0, [sp, 8]

Answer (A-D):

B

mul should have 3 operands, not 2.

(b) C code:
extern int addTwoNumbers(int, int);
int sum = addTwoNumbers(200, 17);

Assembly:
// Assume that sum is at offset 8 on the stack.
mov w1, 200
mov w2, 17
bl addTwoNumbers
str w0, [sp, 8]

Answer (A-D):

D

addTwoNumbers will look for its arguments in w0 and w1, not w1 and w2.

Page 11 of 17

(c) C code:
struct List {

long value;
struct List *next;

};
// linkedList is a pointer to the first node of a linked list
// containing **at least two** nodes
long secondNodeValue = linkedList—>next—>value

Assembly:
// Assume that secondNodeValue is at offset 8 on the stack.
// Assume that linkedList is at offset 16 on the stack.
ldr x0, [sp, 16]
add x0, x0, 8
ldr x0, [x0]
ldr x0, [x0]
str x0, [sp, 8]

Answer (A-D):

A

1st ldr loads linkedList ptr from stack; add gets address of linkedList-next field; 2nd ldr gets value of
field, which is address of the 2nd node in list; 3rd ldr gets value field of 2nd node; str copies into variable

(d) C code:
long arr[20];
long i = 0;
while (i < 20) {

arr[i] = 0;
i++;

}

Assembly:
// Assume that i is stored in callee-saved register x19.
// Assume that a pointer to arr[0] is stored in register x20.
mov x19, xzr
loop1:
str xzr, [x20, x19, lsl 3]
add x19, x19, 1
b loop1
endloop1:

Answer (A-D): infinite loop that writes unbounded off the end of the array

C

Page 12 of 17

6. Bubble Sort Asm

Consider this correct C implementation of the naïve sorting algorithm BubbleSort:

void swap(int array[], size_t i, size_t j)
{

int temp = array[i];
array[i] = array[j];
array[j] = temp;

}

void bubbleInner(int array[], size_t n, size_t pass)
{

size_t k = 0;
while (k < n – pass – 1) {

if (array[k] > array[k + 1])
swap(array, k, k + 1);

k++;
}

}

void bubbleSort(int array[], size_t n)
{

size_t pass;
for (pass = 0; pass < n – 1; pass++)

bubbleInner(array, n, pass);
}

And here is a buggy implementation of bubbleInner() in AArch64 assembly language:

1 .equ ARRAY, 8
2 .equ N, 16
3 .equ PASS, 24
4 .equ K, 32
5
6 .global bubbleInner
7 bubbleInner:
8 sub sp, sp, 48
9 str x30, [sp]

Page 13 of 17

10 str x0, [sp, ARRAY]
11 str x1, [sp, N]
12 str x2, [sp, PASS]
13 str xzr, [sp, K]
14
15 inner_loop:
16 ldr x0, [sp, K]
17 ldr x1, [sp, N]
18 ldr x2, [sp, PASS]
19 sub x3, x1, x2
20 sub x3, x3, 1
21 cmp x0, x3
22 bge afterInner
23
24 add x3, x0, 1
25 ldr x4, [sp, ARRAY]
26 ldr w5, [x4, x0, lsl 3]
27 ldr w6, [x4, x3, lsl 3]
28 cmp w5, w6
29 ble afterInner
30
31 mov x1, x0
32 mov x0, x4
33 mov x2, x3
34 bl swap
35
36 afterIf:
37 ldr x2, [sp, K]
38 add x2, x2, 1
39 str x2, [sp, K]
40 bl inner_loop
41
42 afterInner:
43 ldr x30, [sp]
44 add sp, sp, 48
45 ret

Page 14 of 17

This program has a whopping four (4) mistakes, each with a different characteristic.

For each of the following bugs, write the line number(s) of the offending instruction(s). You
need not identify the bug, just the line number.
(2 pts ea)

(a) 2 buggy instructions (with the same bug) that will cause the assembler to emit an error.

26, 27

These instructions should use lsl 2, since the array elements are ints.

b) 1 buggy instruction that will cause bubbleSort to fail to sort many simple array examples.

29

This should be ble afterIf to avoid calling swap, not break out of the loop entirely.

(c) 1 buggy instruction that could cause bubbleSort to fail a large stress test.

22

The conditional branch should be bhs, because k, n, and pass are all of unsigned type size_t.

(d) 1 buggy instruction that does not compromise bubbleSort's behavior as-is, but would cause
the program to do the wrong thing if we chose to optimize by inlining swap and not constructing
a stackframe at all.

40

The branch should be a simple unconditional branch b, not a function call bl that sets x30.

Page 15 of 17

(e) Now write an “optimized” AArch64 assembly language version of
bubbleSort() using the same strategy that you used in Part 2e of A5
(bigintaddopt.s) – i.e., storing all local variables and parameters in
callee-saved registers instead of on the stack. You should assume that
the .equ and .req definitions at right have been included in your
assembly source file. (14 pts)

.global bubbleSort
bubbleSort:

sub sp, sp, 32
str x30, [sp]
str x19, [sp, oldX19]
str x20, [sp, oldX20]
str x21, [sp, oldX21]

mov array, x0
mov n, x1
// pass = 0;
mov pass, xzr // many valid alternatives

loop:
// if(pass >= n - 1) goto endLoop;
sub x3, n, 1
cmp pass, x3
bhs endLoop

// bubbleInner(array, n, pass);
mov x0, array
mov x1, n
mov x2, pass
bl bubbleInner

// pass++;
add pass, pass, 1
// goto loop;
b loop

endLoop:
ldr x19, [sp, oldX19]
ldr x20, [sp, oldX20]
ldr x21, [sp, oldX21]
ldr x30, [sp]
add sp, sp, 32
ret

Page 16 of 17

array .req x19
n .req x20
pass .req x21
.equ oldX19, 8
.equ oldX20, 16
.equ oldX21, 24

(f) Finally, write the assembly code for the swap() function, using exactly 5 instructions:
4 memory accesses using scaled register offset memory operands, plus a return instruction
(which is provided for you). Do not write a prolog/epilog to manage a stackframe; thus, use
only caller-saved scratch registers. (8 pts)

.global swap
swap:

ldr w3, [x0, x1, lsl 2]
ldr w4, [x0, x2, lsl 2]
str w4, [x0, x1, lsl 2]
str w3, [x0, x2, lsl 2]

ret

Page 17 of 17

